[PDF] Second degré : Résumé de cours et méthodes 1 Définitions



Previous PDF Next PDF







Domaine et racines d’une fonction

racine, ou bien peut en avoir une ou plusieurs voire une infinité Sur le graphe de la fonction, les racines sont les intersections du graphe avec l’axe des x Comment trouver les racines d’une fonction ? Il suffit d’annuler le numérateur de la fonction On est donc ramené à résoudre une équation Rappel :



Chapitre IV : Les fonctions du premier degré

2 2 Comment trouver la racine d’une fonction ? 2 2 1 Soit par observation graphique : Sur les graphiques de référence, pointe, en vert, la racine de chaque fonction Détermine la coordonnée de chaque racine Indique le procédé qui te permet de déterminer, graphiquement, la racine d’une fonction



Second degré : Résumé de cours et méthodes 1 Définitions

racine "évidente" Remarque : le fait de trouver une racine implique forcément que le discriminant est supérieur ou égal à 0 Il est donc inutile de le calculer Exemple : x 1 =1 est une racine "évidente" du trinôme 2x2 5x+3 On doit donc avoir : 1x 2 = c a = 3 2 D’où la deuxième racine x 2 est forcément égale à 3 2



Chapitre 3 : La fonction du second degré f(x) = ax² + bx + c

Racines de la parabole Une parabole possède 0, 1 ou 2 racines Racine(s) d'une fonction • Graphiquement : point(s) d'intersection entre la courbe et l'axe des x • Algébriquement : valeur(s) qui annule(nt) la fonction (y = 0) Delta = b2 – 4 a c Si < 0, alors la parabole possède 0 racine Si = 0, alors la parabole possède 1 racine



CHAPITRE 3 : Dérivation

Etude de la fonction racine carrée en 0 : • La fonction racine carrée est définie en =0 On peut donc étudier sa dérivabilité en =0 lim ℎ→0 F √0+ℎ−√0 ℎ G=lim ℎ→0 √ℎ ℎ =lim ℎ→0 1 √ℎ =+∞ Cette limite n’est pas un réel, donc la fonction racine carrée n’est pas dérivable en =0



CONVEXITÉ - maths et tiques

- La fonction racine carrée ⎣xx est concave sur ⎡0;+∞⎡⎣ - Admis - Notation : La dérivée d’une fonction dérivée f ' se note f '’ Propriété : Soit une fonction f définie et dérivable sur un intervalle I La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f''(x)≥0 pour tout x de I



Calculatrices BA II PLUS™ / BAII PLUS™ PROFESSIONAL

La BA II PLUS™ et la BA II PLUS™ PROFESSIONAL est conforme à la circulaire N° 99-186 DU 19-11-1999 qui définit les conditions d'usage des calculatrices dans les examens et concours organisés par le ministère de



Introduction à Mathematica

Dans la définition d'une fonction, on utilise habituellement le signe ": =" qui signifie une "affectation retardée", c'est-à-dire que le membre de droite n'est pas évalué et affecté à f(x) lors de la définition de la fonction ci-dessus mais il sera évalué plus tard à



La dérivée seconde- - HEC Montréal

comprendre la distinction entre la dérivée première, qui nous informe à propos de la pente de la tangente d'une fonction, et la dérivée seconde, qui indique de quelle façon celle‐ci est courbée

[PDF] touche racine carré calculatrice ti college plus

[PDF] évolution de la scolarisation des filles en france

[PDF] histoire de la scolarisation des filles en france

[PDF] scolarisation des filles histoire

[PDF] les filles ? l'école

[PDF] l'éducation des filles au 20ème siècle

[PDF] racine cubique signe

[PDF] l'éducation des filles au 19ème siècle

[PDF] éducation des filles dans le monde

[PDF] racine cubique de 16

[PDF] participation des eleves en classe

[PDF] grille evaluation participation en classe

[PDF] racine carré de 16

[PDF] mixité eps textes officiels

[PDF] définition mixité eps

Second degré : Résumé de cours et méthodes

1Définitions :

DÉFINITIONOn appelle trinôme du second degré toute fonctionfdéfinie surRparf(x) =ax2+bx+c(a,betcréels aveca6=0).Remarque :Par abus de langage, l"expressionax2+bx+cest aussi appelée trinôme du second degré.

DÉFINITIONOn appelle racine du trinômef, tout réel qui annulef.Exemple :1 est une racine du trinôme 2x2+3x5, car 2(1)2+3(1)5=0.

Remarque :Chercher les racines du trinômeax2+bx+c, revient à résoudre dansRl"équationax2+bx+c=0.

2Factorisation, racines et signe du trinôme :

DÉFINITIONOn appelle discriminant du trinômeax2+bx+c(a6=0), le réelD=b24ac.2-1SiD<0:

Racines :Pas de racines réelles.

Factorisation :Pas de factorisation dansR.

Signe :ax2+bx+cest toujours du signe dea.?

O?ı??a >0

a <01 reSérie Générale - Second degréc

P.Brachet -www .xm1math.net1

2-2SiD=0:

Racines :Une racine réelle dite "double" :x1=b2a.

Factorisation :Pour toutx,ax2+bx+c=a(xx1)2.

Signe :ax2+bx+cest toujours du signe deaet s"annule pourx=x1.?

O?ı??a >0

a <0x

12-3SiD>0:

Racines :Deux racines réelles :x1=bpD

2aetx2=b+pD

2aFactorisation :Pour toutx,ax2+bx+c=a(xx1)(xx2).

Signe :ax2+bx+cest du signe deaà l"extérieur des racines. (on suppose quex1O?ı??a >0 a <0x 1x2x 1x22 c P.Brachet -www .xm1math.net1reSérie Générale - Second degré

3Exemples de résolution d"équations et d"inéquations du second degré

3-1Equations du second degré

Résolution dansRde l"équationx2+2x3=0 :

(Par rapport aux formules, on a ici :a=1,b=2 etc=3 ).

Calcul du discriminant :D=b24ac= (2)24(1)(3) =16.

Le discriminant est strictement positif, donc le trinôme admet deux racines réelles qui sont en fait les solutions de l"équa-

tion :

Calcul des solutions :

x 1=bpD

2a=2p16

21=242

=3x2=b+pD

2a=2+p16

21=2+42

=1. L"ensemble solution est doncS=f3;1g.

Résolution dansRde l"équation 2x22p2x+1=0 :

(Par rapport aux formules, on a ici :a=2,b=2p2 etc=1 ). Calcul du discriminant :D=b24ac= (2p2)24(2)(1) =428=0.

Le discriminant est nul, donc le trinôme admet une seule racine réelle qui est en fait la solution de l"équation :

Calcul de la solution :

x

1=b2a=(2p2)22=p2

2 . L"ensemble solution est doncS=( p2 2

Résolution dansRde l"équation 3x2+4x+5=0 :

(Par rapport aux formules, on a ici :a=3,b=4 etc=5 ). Calcul du discriminant :D=b24ac=424(3)(5) =1660=44.

Le discriminant est strictement négatif, donc le trinôme n"admet aucune racine réelle. L"ensemble solution est doncS=/0

Résolution dansRde l"équationx2+4x=0 :

(Par rapport aux formules, on a ici :a=1,b=4 etc=0 ).

Comme à chaque fois queb=0 ouc=0, il est inutile d"utiliser le discriminant et les formules associées. Les méthodes

traditionnelles vues en Seconde sont plus simples et plus rapides. Ici, il suffit de factoriser parx:

x

2+4x=0,x(x+4) =0,x=0 oux+4=0,x=0 oux=4. L"ensemble solution est doncS=f4;0g

Résolution dansRde l"équation 4x21=0 :

(Par rapport aux formules, on a ici :a=4,b=0 etc=1 ). Icib=0, il est donc inutile d"utiliser le discriminant et les formules associées.

4x21=0,4x2=1,x2=14

,x=12 oux=12 . L"ensemble solution est doncS=12 ;12

3-2Inéquations du second degréMéthode générale :on calcule la valeur du discriminant du trinôme associé à l"inéquation. On en déduit le signe du trinôme sur

R. On détermine alors l"ensemble solutionS, en cherchant les valeurs dexvérifiant l"inéquation.(Pour les bornes, on applique les

règles habituelles : les bornes sont toujours ouvertes aux infinis et pour les "doubles-barres", les autres bornes sont ouvertes si

l"inéquation est de la forme<0 ou>0 et sont fermées si l"inéquation est de la forme60 ou>0 .)

Remarque :Sib=0 ouc=0, il est inutile d"utiliser le discriminant et les formules associées. Les méthodes vues en Seconde

sont plus simples et plus rapides : il suffit en général de factoriser et de faire un tableau de signes.Exemples nécessitant le calcul du discriminant :

Résolution dansRde l"inéquationx2+4x560 :

(Par rapport aux formules, on a ici :a=1,b=4 etc=5 ).

Calcul du discriminant :D=b24ac= (4)24(1)(5) =36.

Le discriminant est strictement positif, la règle est donc "signe deaà l"extérieur des racines". Il faut donc commencer par

calculer les deux racines : x 1=bpD

2a=4p36

21=462

=5x2=b+pD

2a=4+p36

21=4+62

=1

Signe du trinôme surR: (icia=1 est positif, donc le trinôme est positif à l"extérieur des racines et négatif à l"intérieur)1

reSérie Générale - Second degréc

P.Brachet -www .xm1math.net3

x-∞ -51+∞x

2+ 4x-5+0-0+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquelsx2+4x-5 est inférieur ou égal à 0. Cela

revient à déterminer lesxpour lesquels on a le signe-dans le tableau de signe. D"où,S= [-5;1]. Ce qui peut se vérifier

graphiquement :y x 1 -5ORésolution dansRde l"inéquation2x25x+3<0 : (Par rapport aux formules, on a ici :a=2,b=5 etc=3 ).

Calcul du discriminant :D=b24ac= (5)24(2)(3) =49.

Le discriminant est strictement positif, la règle est donc "signe deaà l"extérieur des racines". Il faut donc commencer par

calculer les deux racines : x 1=bpD

2a=(5)p49

2(2)=574=12

x

2=b+pD

2a=(5)+p49

2(2)=5+74=3

Signe du trinôme surR: (icia=2 est négatif, donc le trinôme est négatif à l"extérieur des racines et positif à l"intérieur)x-∞

-312

+∞-2x2-5x+ 3-0+0-Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels-2x2-5x+3 est strictement inférieur à 0. Cela

revient à déterminer lesxpour lesquels on a le signe-dans le tableau de signe. D"où,S=]-¥;-3[[]12

;+¥[. Ce qui peut se vérifier graphiquement :y x

1/2-3+

-ORésolution dansRde l"inéquation2x2+5x4>0 : (Par rapport aux formules, on a ici :a=2,b=5 etc=4 ).

Calcul du discriminant :D=b24ac=524(2)(4) =7.

Le discriminant est strictement négatif, la règle est donc "toujours du signe dea" , c"est à dire toujours négatif cara=2.

Signe du trinôme surR:4

c P.Brachet -www .xm1math.net1reSérie Générale - Second degré

x-∞+∞-2x2+ 5x-4-Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels-2x2+5x-4 est supérieur ou égal à 0, ce qui

est impossible vu le tableau de signe. D"où,S=/0.

Résolution dansRde l"inéquationx2+p2x+1>0 :

(Par rapport aux formules, on a ici :a=1,b=p2 etc=1 ). Calcul du discriminant :D=b2-4ac= (p2)2-4(1)(1) =-2.

Le discriminant est strictement négatif, la règle est donc "toujours du signe dea", c"est à dire toujours positif cara=1.

Signe du trinôme surR:x-∞+∞x

2+⎷2x+ 1+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquelsx2+⎷2x+1 est strictement supérieur à 0, ce

qui est toujours le cas vu le tableau de signe. D"où,S=R. Résolution dansRde l"inéquation 4x2-4⎷3x+3>0 : (Par rapport aux formules, on a ici :a=4,b=-4⎷3 etc=3 ). Calcul du discriminant :D=b2-4ac= (-4⎷3)2-4(4)(3) =0.

Le discriminant est nul, la règle est donc "toujours du signe dea(c"est à dire toujours positif cara=4) et s"annule pour

la racine doublex1=-b2a=-(-4⎷3)24=⎷3 2

Signe du trinôme surR:x-∞

⎷3 2

+∞4x2-4⎷3x+ 3+0+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels 4x2-4⎷3x+3 est strictement supérieur à 0, ce

qui est toujours le cas vu le tableau de signesaufpour⎷3 2 . D"où,S=R-( ⎷3 2

4Relations entre les coefficients et les racines d"un trinôme

PROPRIÉTÉSoit un trinômeax2+bx+c(a6=0) dont le discriminantDest strictement positif. Les deux racinesx1etx2sont telles que :

x

1+x2=-ba

etx1x2=ca

Application :Cela permet de déterminer rapidement une racine connaissant l"autre, en particulier lorsque le trinôme admet une

racine "évidente". Remarque : le fait de trouver une racine implique forcément que le discriminant est supérieur ou égal à 0. Il est

donc inutile de le calculer! Exemple :x1=1 est une racine "évidente" du trinôme 2x2-5x+3. On doit donc avoir :

1x2=ca

=32 . D"où la deuxième racinex2est forcément égale à32

Une conséquence de ces relations entre les coefficients et les racines d"un trinôme est la propriété suivante :1

reSérie Générale - Second degréc

P.Brachet -www .xm1math.net5

PROPRIÉTÉ

Dire que deux nombres réels ont pour sommeSet pour produitPéquivaut à dire qu"ils sont solutions dansRde l"équation du

second degré :x2Sx+P=0 .Exemple :Pour déterminer (s"ils existent) deux réels dont la sommeSest égale à 6 et dont le produitPest égal à 1, on résoud

dansRl"équationx2Sx+P=0,x26x+1=0. On aD= (6)24(1)(1) =32. Il ya donc deux solutions réelles : x

1=6p32

2 =64p2 2 =32p2 etx2=6+p32 2 =6+4p2 2 =3+2p2. Les deux réels cherchés sont donc 32p2 et

3+2p2.

5Equations bicarrées :ax4+bx2+c=0Méthode générale :Pour résoudre ce genre d"équations, on utilise un changement d"inconnue :

En posantX=x2, l"équationax4+bx2+c=0 est équivalente au système(X=x2 aX

2+bX+c=0Exemple :Résolution dansRde l"équationx47x2+12=0

On poseX=x2, l"équation est équivalente au système(X=x2 X

27X+12=0

On résoud l"équation du second degréX27X+12=0 :

D= (7)24(1)(12) =4948=1 ,X1=(7)p1

21=62
=3 ,X2=(7)+p1 21=82
=4 On a doncX=3 ouX=4, ce qui équivaut àx2=3 oux2=4.

D"où,x=p3 oux=p3 oux=2 oux=2.

Ainsi, l"ensemble solution estS=p3;p3;2;2.

6Equations irrationnelles avec des racines carréesMéthode générale :On isole la racine carrée et on utilise le fait quesiA=BalorsA2=B2. On obtient une deuxiéme équation du

de l"équation initiale. (En effet, on ne procéde pas par équivalence mais par implication. La vérification est donc indispensable.)Exemple :Résolution dansRde l"équationp4x19=x4.p4x19=x4)4x19= (x4)2)4x19=x28x+16)0=x28x+164x+19)x212x+35=0

Résolution de l"équation du second degré obtenue :

D= (12)24(1)(35) =4 ,x1=(12)p4

21=102

=5 ,x2=(12)+p4

21=142

=7 .

Vérification :

p4519=p1=1 existe et est bien égal à 54p4719=p9=3 existe et est bien égal à 74.

L"ensemble solution est :S=f5;7g.6

c P.Brachet -www .xm1math.net1reSérie Générale - Second degréquotesdbs_dbs8.pdfusesText_14