[PDF] MATH 115A SOLUTION SET V FEBRUARY 17, 2005 Solution



Previous PDF Next PDF







MÓDULO 23: USO DE ANTIBIÓTICOS EN ANIMALES

Control de residuos y resistencia a los antibióticos 23 Agencias federales que controlan los residuos 24 Agencias federales que controlan la resistencia 24 Manteniéndose actualizado con respecto a las regulaciones y problemas con 25 los antibióticos Resumen 26 Recursos/Enlaces en Internet 27



Everything You Need to Know About Modular Arithmetic

A number a has an inverse modulo 26 if there is a b such that a·b ≡ 1(mod 26)or a·b = 26·k +1 thus we are looking for numbers whose products are 1 more than a multiple of 26 We create the following table Table 2: inverses modulo 26 x 1 3 5 7 9 11 15 17 19 21 23 25 x−1 (MOD m) 1 9 21 15 3 19 7 23 11 5 17 25



Solution: x y p x - UC Santa Barbara

≡ 1 (mod 23), and so 3 is a quadratic residue modulo 23 For p = 31, we have 3(31−1)/2 = 315 ≡ −1 (mod 31), and so 3 is a quadratic non-residue modulo 31 (3) Given that a is a quadratic residue modulo the odd prime p, prove the following: (a) a is not a primitive root of p (b) The integer p − a is a quadratic residue or non-residue



MATH 115A SOLUTION SET V FEBRUARY 17, 2005 Solution

(c) Using the exponents 2, 11 and 22, and working modulo 23 gives 22 ≡ 4, 211 ≡ 1 32 ≡ 9, 311 ≡ 1 52 ≡ 2, 511 ≡ 22, 522 ≡ 1 Thus 2, 3, and 5 have orders 11, 11 and 22 respectively (2) Establish each of the following statements below: (a) If a has order hk modulo n, then ah has order k modulo n



Primitive Roots mod p - homepagesmathuicedu

5 is a primitive root mod 23 It can be proven that there exists a primitive root mod p for every prime p (However, the proof isn’t easy; we shall omit it here ) 3) For each primitive root b in the table, b 0, b 1, b 2, , b p − 2 are all distinct in Z p, and they constituted all the nonzero elements of Z p Again, this is always true



18781 Solutions to Problem Set 4, Part 2

311 33 33 33 9 43 9 5 9 1 (mod 23); so 3 doesn’t work either 511 (52)5 5 25 5 9 5 1 (mod 23) and 52 2 (mod 23), so 5 is a primitve root mod 23 Now by the proof of existence of primitive roots mod p2, using Hensel’s lemma, only one lift of 5 will fail to be a primitive root mod 232:We need to check whether 522 1 (mod 232): 522 = (55)4 52



ITALY DICHIARAZIONE DOGANALE CN23 CUSTOMS DECLARATION

EP0594A-EP2641 - Mod 01019A pdf 1 23/04/20 08:08 ISTRUZIONI Allegare la dichiarazione doganale e i documenti che l’accompagnano saldamente all’esterno dell’invio, preferibilmente in una busta trasparente adesiva



Homework 9 Name - California State University, Fresno

116 - Number Theory Spring 2007 Homework 9 Name: Instructor: Travis Kelm Section 9 2 - Primitive Roots for Primes 1 Order Two: (a) Show that for any positive integer m > 2 we have that ordm(m −1)=2



623 Attestazione di “cessione tra produttori e/o

il modulo 6 23 - attestazione di "cessione tra produttori e/o commercianti" di imballaggi vuoti, sarà disponibile anche sul sito dichiarazioni on line nell'area Autodichiarazioni per casi particolari Dal web sarà possibile usufruire del relativo servizio di spedizione del modulo ai propri fornitori 144

[PDF] modulo 11

[PDF] calcul modulo 23

[PDF] clé de contrôle sécurité sociale

[PDF] 11 modulo 10

[PDF] calcul modulo 97

[PDF] personnage du livre moi boy

[PDF] escadrille 80 questionnaire de lecture

[PDF] controle de lecture moi boy

[PDF] moi boy roald dahl pdf entier

[PDF] moi boy roald dahl résumé

[PDF] moi boy roald dahl pdf gratuit

[PDF] séquence pluriel des noms ce2

[PDF] no et moi telecharger pdf

[PDF] leçon pluriel des noms ce2 lutin bazar

[PDF] no et moi avis argumenté

MATH 115A SOLUTION SET V

FEBRUARY 17, 2005

(1) Find the orders of the integers 2, 3 and 5: (a) modulo 17; (b) modulo 19; (c) modulo 23.

Solution:

(a) Euler"s theorem implies that it suffices to consider exponents which are divisors of 16.

Working modulo 17 gives

2

2≡4,24≡16,28≡1,

3 5 Hence it follows that 2, 3, and 5 have orders 8, 16 and 16 respectively. (b) Consider the divisors 2, 3, 6 and 9 of 18. Working modulo 19 gives 2 3 5

2≡6,53≡11,56≡7,59≡1.

Hence it follows that 2, 3, and 5 have orders 18, 18 and 9 respectively. (c) Using the exponents 2, 11 and 22, and working modulo 23 gives 2

2≡4,211≡1

3

2≡9,311≡1

5

2≡2,511≡22,522≡1.

Thus 2, 3, and 5 have orders 11, 11 and 22 respectively. (2) Establish each of the following statements below: (a) Ifahas orderhkmodulon, thenahhas orderkmodulon. (b) Ifahas order 2kmodulo an odd primep, thenak≡ -1 modp.

Solution:

(a) Assume thatahas orderhk(modn), so thatahk≡1 (modn), butam?≡1 (modn) for 0< m < hk. Since (ah)k≡1 (modn), it follows that the elementahhas order at most k.

Now if the order ofahisr, with 0< r < k, then

a hr= (ah)r ≡1 modn, 1

2 MATH 115A SOLUTION SET V FEBRUARY 17, 2005

and this is impossible, sincehr < hk. Hence it follows thatahhas orderk(modn). (b) Suppose thatahas order 2k(modp), wherepis an odd prime. Then a

2k≡1 (modp) (1)

butam≡1 (modp) for 0< m < p. Equation (1) implies thatp|(a2k-1), i.e. that p|(ak-1)(ak+ 1). Therefore eitherak≡1 (modp), orak≡ -1 (modp). However the former possibilty cannot occur, sinceahas order 2k(modp). It therefore follows that a k≡ -1 (modp), as claimed. (3) Prove thatφ(2n-1) is a multiple ofnfor anyn≥1. [Hint: The integer 2 has order nmodulo 2n-1.]

Solution:

Plainly we have that 2

implies that 2 k?≡1 (mod 2n-1), for otherwise we would have (2n-1)|(2k-1), which is impossible. Hence it follows that the order of 2 (mod 2 n-1) is equal ton. By Euler"s theorem, we have 2

φ(2n-1)≡1 (mod 2n-1),

and so it follows thatn|φ(2n-1). (4) Prove the following assertions: (a) The odd prime divisors of the integern2+ 1 are of the form 4k+ 1. [Hint: Ifpis an odd prime, thenn2≡ -1 modpimplies that 4|φ(p).] (b) The odd prime divisors of the integern4+ 1 are of the form 8k+ 1.

Solution:

(a) Suppose thatpis an odd prime divisor ofn2+ 1, so thatn2≡ -1 modp. This implies thatn4≡1 modp. Euler"s theorem tells us that 4φ(p)≡1 modp, i.e. that 4 p-1≡1 modp. Hence it follows that 4|(p-1), and sop= 4k+ 1 for somek. (b) Ifpis an odd prime divisor ofn4+ 1, thenn4≡ -1 modp, and son8≡1 modp. Hence, arguing just as in part (a), it follows that 8|(p-1), i.e. thatp= 8k+ 1 for some k. (5) Letrbe a primitive root modulop, wherepis an odd prime. Prove the following: (a) The congruencer(p-1)/2≡ -1 (modp) holds. (b) Ifr?is any other primitive root modulop, thenrr?is not a primitive root modulop. [Hint: From part (a), (rr?)(p-1)/2≡1 (modp).] (c) If the integerr?is such thatrr?≡1 (modp), thenr?is also a primitive root modulo p.

Solution:

(a) Sinceris a primitive root modulop,rp-1≡1 (modp), andp-1 is the smallest integer with this property. We deduce thatp|(rp-1-1), i.e.p|[(r(p-1)/2-1)(r(p-1)/2+1)]. Hence eitherr(p-1)/2≡1 (modp) orr(p-1)/2≡ -1 (modp). The first possibilty contradicts the fact thatris a primitive root modulop. Thereforer(p-1)/2≡ -1 (modp) as claimed. (b) Ifrandr?are primitive roots modulo an odd primep, then by part (a), (rr?)(p-1)/2≡r(p-1)/2(r?)(p-1)/2≡ -1· -1≡1 (modp).

MATH 115A SOLUTION SET V FEBRUARY 17, 2005 3

Hencerr?has order at most (p-1)/2 modulop, and so cannot be a primitive root modulo p. (c) By Fermat"s Little Theorem, we have (r?)p-1≡1 (modp). If the order ofr?modulo which contradicts the fact thatris a primitive root modulop. Therefore the order ofr? modulopis equal top-1, and sor?is a primitive root modulop. (6) For any primep >3, prove that the primitive roots modulopoccur in incongruent pairsr,r?, whererr?≡1 (modp). [Hint: Ifris a primitive root modulop, consider the integerr?=rp-2.]

Solution:

Letrbe a primitive root modulo the primep >3, and setr?=rp-2. Thenrr?=r·rp-2=quotesdbs_dbs3.pdfusesText_6