Logarithms – University of Plymouth









Appendix N: Derivation of the Logarithm Change of Base Formula

We set out to prove the logarithm change of base formula: logb x = loga x loga b. To do so we let y = logb x and apply these as exponents on the base.


6.2 Properties of Logarithms

The proofs of the Change of Base formulas are a result of the other properties studied in this section. If we start with bx logb(a) and use the Power Rule 
S&Z . & .


MATHEMATICS 0110A CHANGE OF BASE Suppose that we have

So we get the following rule: Change of Base Formula: logb a = logc a logc b. Example 1. Express log3 10 using natural logarithms. log3 10 =.
Change of Base


Derivation – Rules for Logarithms

Sometimes it is helpful to change the base of a logarithm such as logbn to a logarithm in base. Let x = logbn bx = n. - Def of log loga bx = loga n. - log of 
DerivationRulesforLogarithms





Elementary Functions The logarithm as an inverse function

Each of these three properties is merely a restatement of a property of exponents. Smith (SHSU). Elementary Functions. 2013. 18 / 29. Changing the base.
. Logarithms (slides to )


Logarithms – University of Plymouth

Jan 16 2001 7. Quiz on Logarithms. 8. Change of Bases ... following important rules apply to logarithms. ... Proof that loga MN = loga M + loga N.
PlymouthUniversity MathsandStats logarithms


Introduction to Algorithms

I can prove this using the definition of big-Omega: This tells us that every positive power of the logarithm of n to the base b where b ¿ 1
cs lect fall notes


Lesson 5-2 - Using Properties and the Change of Base Formula

You can prove the Change of Base. Formula blog X x because exponents and logarithms are inverses. Take the log base a of both sides: log





What is a logarithm? Log base 10

Now we have a new set of rules to add to the others: Table 4. Functions of log base 10 and base e. Exponents. Log base 10. Natural Logs sr.
logarithms


Logarithms Math 121 Calculus II

Proof. By the inverse of the Fundamental Theorem of Calculus since lnx is defined as an In particular
logs


214736 Logarithms – University of Plymouth Levelling-Up Basic MathematicsLogarithmsRobin HoranThe aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of logarithms.Copyrightc

2000rhoran@plymouth.ac.ukLast Revision Date: January 16, 2001 Version 1.00

Table of Contents1.Logarithms2.Rules of Logarithms3.Logarithm of a Product4.Logarithm of a Quotient5.Logarithm of a Power6.Use of the Rules of Logarithms7.Quiz on Logarithms8.Change of BasesSolutions to QuizzesSolutions to Problems

Section 1: Logarithms 31. Logarithms (Introduction)LetaandNbe positive real numbers and letN=an:Thennis

called thelogarithm ofNto the basea. We write this asn= logaN:Examples 1(a)Since 16 = 24;then 4 = log216:(b)Since 81 = 34;then 4 = log381:(c)Since 3 =p9 = 912;then 1=2 = log93:(d)Since 31= 1=3;then1 = log3(1=3):

Section 1: Logarithms 4ExerciseUse the denition of logarithm given on the previous page to deter-

mine the value ofxin each of the following.1.x= log3272.x= log51253.x= log2(1=4)4.2 = logx(16)5.3 = log2x

Section 2: Rules of Logarithms 52. Rules of LogarithmsLeta;M;Nbe positive real numbers andkbe any number. Then the

following important rules apply to logarithms.1:logaMN= logaM+ logaN

2:logaMN= logaMlogaN

3:logamk=klogaM

4:logaa= 1

5:loga1 = 0

Section 3: Logarithm of a Product 63. Logarithm of a Product1. Proof thatlogaMN= logaM+ logaN:Examples 2(a)log64 + log69 = log6(49) = log636:

Ifx= log636;then 6x= 36 = 62:

Thus log

64 + log69 = 2:(b)log520 + log414= log52014:

Now 2014= 5 so log520 + log414= log55 = 1:Quiz.To which of the following numbers does the expression log

315 + log306 simplify?(a)4(b)3(c)2(d)1

Section 4: Logarithm of a Quotient 74. Logarithm of a Quotient1. Proof thatlogaMN= logaMlogaN:Examples 3(a)log240log25 = log2405= log28:

Ifx= log28 then 2x= 8 = 23;sox= 3:(b)If log35 = 1:465 then we can nd log306:

Since 3=5 = 06;then log306 = log335= log33log35:

Now log

33 = 1;so that log306 = 11465 =0465Quiz.To which of the following numbers does

the expression log

212log234simplify?(a)0(b)1(c)2(d)4

Section 5: Logarithm of a Power 85. Logarithm of a Power1. Proof thatlogamk=klogaMExamples 4(a)Find log10(1=10000):We have 10000 = 104;so 1=10000 =

1=104= 104:

Thus log

10(1=10000) = log10104=4log1010 =4;where

we have used rule 4 to write log

1010 = 1.(b)Find log366:We have 6 =p36 = 3612:

Thus log

366 = log36

3612

12log3636 =12:Quiz.If log35 = 1465;which of the following numbers is log3004?(a)-2.930(b)-1.465(c)-3.465(d)2.930

Section 6: Use of the Rules of Logarithms 96. Use of the Rules of LogarithmsIn this section we look at some applications of the rules of logarithms.Examples 5(a)log41 = 0:(b)log1010 = 1:(c)log10125 + log108 = log10(1258) = log101000

= log

10103= 3log1010 = 3:(d)2log105 + log104 = log1052+ log104 = log10(254)

= log

10100 = log10102= 2log1010 = 2:(e)3loga4+loga(1=4)4loga2 = loga43+loga(1=4)loga24

= log a4314loga24= loga42loga24 = log a16loga16 = 0:

Section 6: Use of the Rules of Logarithms 10ExerciseUse the rules of logarithms to simplify each of the following.1.3log32log34 + log3122.3log105 + 5log102log1043.2loga6(loga4 + 2loga3)4.5log36(2log34 + log318)5.3log4(p3)12log43 + 3log42log46

Section 7: Quiz on Logarithms 117. Quiz on LogarithmsIn each of the following, ndx:Begin Quiz1.logx1024 = 2(a)23(b)24(c)22(d)252.x= (logap27logap8logap125)=(loga6loga20)(a)1(b)3(c)3/2(d)-2/33.logc(10 +x)logcx= logc5)(a)2.5(b)4.5(c)5.5(d)7.5End Quiz

Section 8: Change of Bases 128. Change of BasesThere is one other rule for logarithms which is extremely useful in

practice. This relates logarithms in one base to logarithms in a dier- ent base. Most calculators will have, as standard, a facility for nding logarithms to the base 10 and also for logarithms to basee(natural logarithms). What happens if a logarithm to a dierent base, for

example 2, is required? The following is the rule that is needed.logac= logablogbc1. Proof of the above rule

Section 8: Change of Bases 13The most frequently used form of the rule is obtained by rearranging the rule on the previous page. We have log ac= logablogbcso logbc=logaclogab:Examples 6(a)Using a calculator we nd that log103 = 047712 and log Levelling-Up Basic MathematicsLogarithmsRobin HoranThe aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of logarithms.Copyrightc

2000rhoran@plymouth.ac.ukLast Revision Date: January 16, 2001 Version 1.00

Table of Contents1.Logarithms2.Rules of Logarithms3.Logarithm of a Product4.Logarithm of a Quotient5.Logarithm of a Power6.Use of the Rules of Logarithms7.Quiz on Logarithms8.Change of BasesSolutions to QuizzesSolutions to Problems

Section 1: Logarithms 31. Logarithms (Introduction)LetaandNbe positive real numbers and letN=an:Thennis

called thelogarithm ofNto the basea. We write this asn= logaN:Examples 1(a)Since 16 = 24;then 4 = log216:(b)Since 81 = 34;then 4 = log381:(c)Since 3 =p9 = 912;then 1=2 = log93:(d)Since 31= 1=3;then1 = log3(1=3):

Section 1: Logarithms 4ExerciseUse the denition of logarithm given on the previous page to deter-

mine the value ofxin each of the following.1.x= log3272.x= log51253.x= log2(1=4)4.2 = logx(16)5.3 = log2x

Section 2: Rules of Logarithms 52. Rules of LogarithmsLeta;M;Nbe positive real numbers andkbe any number. Then the

following important rules apply to logarithms.1:logaMN= logaM+ logaN

2:logaMN= logaMlogaN

3:logamk=klogaM

4:logaa= 1

5:loga1 = 0

Section 3: Logarithm of a Product 63. Logarithm of a Product1. Proof thatlogaMN= logaM+ logaN:Examples 2(a)log64 + log69 = log6(49) = log636:

Ifx= log636;then 6x= 36 = 62:

Thus log

64 + log69 = 2:(b)log520 + log414= log52014:

Now 2014= 5 so log520 + log414= log55 = 1:Quiz.To which of the following numbers does the expression log

315 + log306 simplify?(a)4(b)3(c)2(d)1

Section 4: Logarithm of a Quotient 74. Logarithm of a Quotient1. Proof thatlogaMN= logaMlogaN:Examples 3(a)log240log25 = log2405= log28:

Ifx= log28 then 2x= 8 = 23;sox= 3:(b)If log35 = 1:465 then we can nd log306:

Since 3=5 = 06;then log306 = log335= log33log35:

Now log

33 = 1;so that log306 = 11465 =0465Quiz.To which of the following numbers does

the expression log

212log234simplify?(a)0(b)1(c)2(d)4

Section 5: Logarithm of a Power 85. Logarithm of a Power1. Proof thatlogamk=klogaMExamples 4(a)Find log10(1=10000):We have 10000 = 104;so 1=10000 =

1=104= 104:

Thus log

10(1=10000) = log10104=4log1010 =4;where

we have used rule 4 to write log

1010 = 1.(b)Find log366:We have 6 =p36 = 3612:

Thus log

366 = log36

3612

12log3636 =12:Quiz.If log35 = 1465;which of the following numbers is log3004?(a)-2.930(b)-1.465(c)-3.465(d)2.930

Section 6: Use of the Rules of Logarithms 96. Use of the Rules of LogarithmsIn this section we look at some applications of the rules of logarithms.Examples 5(a)log41 = 0:(b)log1010 = 1:(c)log10125 + log108 = log10(1258) = log101000

= log

10103= 3log1010 = 3:(d)2log105 + log104 = log1052+ log104 = log10(254)

= log

10100 = log10102= 2log1010 = 2:(e)3loga4+loga(1=4)4loga2 = loga43+loga(1=4)loga24

= log a4314loga24= loga42loga24 = log a16loga16 = 0:

Section 6: Use of the Rules of Logarithms 10ExerciseUse the rules of logarithms to simplify each of the following.1.3log32log34 + log3122.3log105 + 5log102log1043.2loga6(loga4 + 2loga3)4.5log36(2log34 + log318)5.3log4(p3)12log43 + 3log42log46

Section 7: Quiz on Logarithms 117. Quiz on LogarithmsIn each of the following, ndx:Begin Quiz1.logx1024 = 2(a)23(b)24(c)22(d)252.x= (logap27logap8logap125)=(loga6loga20)(a)1(b)3(c)3/2(d)-2/33.logc(10 +x)logcx= logc5)(a)2.5(b)4.5(c)5.5(d)7.5End Quiz

Section 8: Change of Bases 128. Change of BasesThere is one other rule for logarithms which is extremely useful in

practice. This relates logarithms in one base to logarithms in a dier- ent base. Most calculators will have, as standard, a facility for nding logarithms to the base 10 and also for logarithms to basee(natural logarithms). What happens if a logarithm to a dierent base, for

example 2, is required? The following is the rule that is needed.logac= logablogbc1. Proof of the above rule

Section 8: Change of Bases 13The most frequently used form of the rule is obtained by rearranging the rule on the previous page. We have log ac= logablogbcso logbc=logaclogab:Examples 6(a)Using a calculator we nd that log103 = 047712 and log
  1. log base change formula proof
  2. log base change rule proof
  3. logarithm base change formula proof