Logarithms – University of Plymouth









MATHEMATICS 0110A CHANGE OF BASE Suppose that we have

Change of Base Formula: logb a = logc a logc b. Example 1. Express log3 10 using natural logarithms. log3 10 = ln 10 ln 3. Example 2.
Change of Base


Logarithms - changing the base

For example logarithms to the base 2 are used in communications engineering. Your calculator can still be used but you need to apply a formula for changing the 
mc logs


Lesson 5-2 - Using Properties and the Change of Base Formula

Example A. Use a calculator and the Change of Base Formula to find an approximation of log 28. log 28- log 28 log 5. ≈ 2.070. Try These A.


Precalculus: 4.3 Rules of Loagrithms Concepts: rules of logarithms

Concepts: rules of logarithms change of base
. RulesofLogarithms





6.11 Notes – Change of base and log equations

Well the reason is that we cannot evaluate a logarithm like. in our heads. Change of Base Formula: loga c = Examples: 1). 4.
day notes . notes change of base keyed


Name Objective: a. Use change-of-base formula to rewrite and

In order to evaluate logarithms with other bases you need to use the change-of-base formula. Examples: Evaluate the following logarithms. a) log4 25 b) log2 12.
Properties of Logarithms


SECTION 4.4 Evaluating Logarithms and the Change-of-Base

For example with the change-of-base theorem
. evaluating logs change of base


Logarithms – University of Plymouth

16 janv. 2001 Use of the Rules of Logarithms. 7. Quiz on Logarithms. 8. Change of Bases. Solutions to Quizzes. Solutions to Problems ...
PlymouthUniversity MathsandStats logarithms





Linear Regression Models with Logarithmic Transformations

17 mars 2011 Logarithms may have other bases for instance the decimal logarithm of base 10. (The base 10 logarithm is used in the definition of the ...
logmodels


6.2 Properties of Logarithms

Your. Calculus teacher will have more to say about this when the time comes. Example 6.2.3. Use an appropriate change of base formula to convert the following 
S&Z . & .


211349 Logarithms – University of Plymouth Levelling-Up Basic MathematicsLogarithmsRobin HoranThe aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of logarithms.Copyrightc

2000rhoran@plymouth.ac.ukLast Revision Date: January 16, 2001 Version 1.00

Table of Contents1.Logarithms2.Rules of Logarithms3.Logarithm of a Product4.Logarithm of a Quotient5.Logarithm of a Power6.Use of the Rules of Logarithms7.Quiz on Logarithms8.Change of BasesSolutions to QuizzesSolutions to Problems

Section 1: Logarithms 31. Logarithms (Introduction)LetaandNbe positive real numbers and letN=an:Thennis

called thelogarithm ofNto the basea. We write this asn= logaN:Examples 1(a)Since 16 = 24;then 4 = log216:(b)Since 81 = 34;then 4 = log381:(c)Since 3 =p9 = 912;then 1=2 = log93:(d)Since 31= 1=3;then1 = log3(1=3):

Section 1: Logarithms 4ExerciseUse the denition of logarithm given on the previous page to deter-

mine the value ofxin each of the following.1.x= log3272.x= log51253.x= log2(1=4)4.2 = logx(16)5.3 = log2x

Section 2: Rules of Logarithms 52. Rules of LogarithmsLeta;M;Nbe positive real numbers andkbe any number. Then the

following important rules apply to logarithms.1:logaMN= logaM+ logaN

2:logaMN= logaMlogaN

3:logamk=klogaM

4:logaa= 1

5:loga1 = 0

Section 3: Logarithm of a Product 63. Logarithm of a Product1. Proof thatlogaMN= logaM+ logaN:Examples 2(a)log64 + log69 = log6(49) = log636:

Ifx= log636;then 6x= 36 = 62:

Thus log

64 + log69 = 2:(b)log520 + log414= log52014:

Now 2014= 5 so log520 + log414= log55 = 1:Quiz.To which of the following numbers does the expression log

315 + log306 simplify?(a)4(b)3(c)2(d)1

Section 4: Logarithm of a Quotient 74. Logarithm of a Quotient1. Proof thatlogaMN= logaMlogaN:Examples 3(a)log240log25 = log2405= log28:

Ifx= log28 then 2x= 8 = 23;sox= 3:(b)If log35 = 1:465 then we can nd log306:

Since 3=5 = 06;then log306 = log335= log33log35:

Now log

33 = 1;so that log306 = 11465 =0465Quiz.To which of the following numbers does

the expression log

212log234simplify?(a)0(b)1(c)2(d)4

Section 5: Logarithm of a Power 85. Logarithm of a Power1. Proof thatlogamk=klogaMExamples 4(a)Find log10(1=10000):We have 10000 = 104;so 1=10000 =

1=104= 104:

Thus log

10(1=10000) = log10104=4log1010 =4;where

we have used rule 4 to write log

1010 = 1.(b)Find log366:We have 6 =p36 = 3612:

Thus log

366 = log36

3612

12log3636 =12:Quiz.If log35 = 1465;which of the following numbers is log3004?(a)-2.930(b)-1.465(c)-3.465(d)2.930

Section 6: Use of the Rules of Logarithms 96. Use of the Rules of LogarithmsIn this section we look at some applications of the rules of logarithms.Examples 5(a)log41 = 0:(b)log1010 = 1:(c)log10125 + log108 = log10(1258) = log101000

= log

10103= 3log1010 = 3:(d)2log105 + log104 = log1052+ log104 = log10(254)

= log

10100 = log10102= 2log1010 = 2:(e)3loga4+loga(1=4)4loga2 = loga43+loga(1=4)loga24

= log a4314loga24= loga42loga24 = log a16loga16 = 0:

Section 6: Use of the Rules of Logarithms 10ExerciseUse the rules of logarithms to simplify each of the following.1.3log32log34 + log3122.3log105 + 5log102log1043.2loga6(loga4 + 2loga3)4.5log36(2log34 + log318)5.3log4(p3)12log43 + 3log42log46

Section 7: Quiz on Logarithms 117. Quiz on LogarithmsIn each of the following, ndx:Begin Quiz1.logx1024 = 2(a)23(b)24(c)22(d)252.x= (logap27logap8logap125)=(loga6loga20)(a)1(b)3(c)3/2(d)-2/33.logc(10 +x)logcx= logc5)(a)2.5(b)4.5(c)5.5(d)7.5End Quiz

Section 8: Change of Bases 128. Change of BasesThere is one other rule for logarithms which is extremely useful in

practice. This relates logarithms in one base to logarithms in a dier- ent base. Most calculators will have, as standard, a facility for nding logarithms to the base 10 and also for logarithms to basee(natural logarithms). What happens if a logarithm to a dierent base, for

example 2, is required? The following is the rule that is needed.logac= logablogbc1. Proof of the above rule

Section 8: Change of Bases 13The most frequently used form of the rule is obtained by rearranging the rule on the previous page. We have log ac= logablogbcso logbc=logaclogab:Examples 6(a)Using a calculator we nd that log103 = 047712 and log

107 = 084510:Using the above rule,

log

37 =log107log103=084510047712= 177124:(b)We can do the same calculation using instead logs to basee.

Using a calculator, log

e3 = 109861 and loge7 = 194591: Thus log

37 =ln7ln3=194591109861= 177125:

The calculations have all been done to ve decimal places, which explains the slight dierence in answers. Section 8: Change of Bases 14(c)Given only that log105 = 069897 we can still nd log25;as follows. First we have 2 = 10=5 so log

102 = log10105

= log

1010log105

= 1069897 = 030103: Then log

25 =log105log102=069897030103= 232193:

Solutions to Quizzes 15Solutions to QuizzesSolution to Quiz:

Using rule 1 we have

log

315 + log306 = log3(1506) = log39

But 9 = 3

2so log

315 + log306 = log332= 2:End Quiz

Solutions to Quizzes 16Solution to Quiz:

Using rule 2 we have

log

212log234= log21234

Now we have 1234= 1243=1243= 16:

Thus log

212log234= log216 = log224:

Ifx= log224;then 2x= 24;sox= 4:End Quiz

Solutions to Quizzes 17Solution to Quiz:

Note that

004 = 4=100 = 1=25 = 1=52= 52:

Thus log Levelling-Up Basic MathematicsLogarithmsRobin HoranThe aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of logarithms.Copyrightc

2000rhoran@plymouth.ac.ukLast Revision Date: January 16, 2001 Version 1.00

Table of Contents1.Logarithms2.Rules of Logarithms3.Logarithm of a Product4.Logarithm of a Quotient5.Logarithm of a Power6.Use of the Rules of Logarithms7.Quiz on Logarithms8.Change of BasesSolutions to QuizzesSolutions to Problems

Section 1: Logarithms 31. Logarithms (Introduction)LetaandNbe positive real numbers and letN=an:Thennis

called thelogarithm ofNto the basea. We write this asn= logaN:Examples 1(a)Since 16 = 24;then 4 = log216:(b)Since 81 = 34;then 4 = log381:(c)Since 3 =p9 = 912;then 1=2 = log93:(d)Since 31= 1=3;then1 = log3(1=3):

Section 1: Logarithms 4ExerciseUse the denition of logarithm given on the previous page to deter-

mine the value ofxin each of the following.1.x= log3272.x= log51253.x= log2(1=4)4.2 = logx(16)5.3 = log2x

Section 2: Rules of Logarithms 52. Rules of LogarithmsLeta;M;Nbe positive real numbers andkbe any number. Then the

following important rules apply to logarithms.1:logaMN= logaM+ logaN

2:logaMN= logaMlogaN

3:logamk=klogaM

4:logaa= 1

5:loga1 = 0

Section 3: Logarithm of a Product 63. Logarithm of a Product1. Proof thatlogaMN= logaM+ logaN:Examples 2(a)log64 + log69 = log6(49) = log636:

Ifx= log636;then 6x= 36 = 62:

Thus log

64 + log69 = 2:(b)log520 + log414= log52014:

Now 2014= 5 so log520 + log414= log55 = 1:Quiz.To which of the following numbers does the expression log

315 + log306 simplify?(a)4(b)3(c)2(d)1

Section 4: Logarithm of a Quotient 74. Logarithm of a Quotient1. Proof thatlogaMN= logaMlogaN:Examples 3(a)log240log25 = log2405= log28:

Ifx= log28 then 2x= 8 = 23;sox= 3:(b)If log35 = 1:465 then we can nd log306:

Since 3=5 = 06;then log306 = log335= log33log35:

Now log

33 = 1;so that log306 = 11465 =0465Quiz.To which of the following numbers does

the expression log

212log234simplify?(a)0(b)1(c)2(d)4

Section 5: Logarithm of a Power 85. Logarithm of a Power1. Proof thatlogamk=klogaMExamples 4(a)Find log10(1=10000):We have 10000 = 104;so 1=10000 =

1=104= 104:

Thus log

10(1=10000) = log10104=4log1010 =4;where

we have used rule 4 to write log

1010 = 1.(b)Find log366:We have 6 =p36 = 3612:

Thus log

366 = log36

3612

12log3636 =12:Quiz.If log35 = 1465;which of the following numbers is log3004?(a)-2.930(b)-1.465(c)-3.465(d)2.930

Section 6: Use of the Rules of Logarithms 96. Use of the Rules of LogarithmsIn this section we look at some applications of the rules of logarithms.Examples 5(a)log41 = 0:(b)log1010 = 1:(c)log10125 + log108 = log10(1258) = log101000

= log

10103= 3log1010 = 3:(d)2log105 + log104 = log1052+ log104 = log10(254)

= log

10100 = log10102= 2log1010 = 2:(e)3loga4+loga(1=4)4loga2 = loga43+loga(1=4)loga24

= log a4314loga24= loga42loga24 = log a16loga16 = 0:

Section 6: Use of the Rules of Logarithms 10ExerciseUse the rules of logarithms to simplify each of the following.1.3log32log34 + log3122.3log105 + 5log102log1043.2loga6(loga4 + 2loga3)4.5log36(2log34 + log318)5.3log4(p3)12log43 + 3log42log46

Section 7: Quiz on Logarithms 117. Quiz on LogarithmsIn each of the following, ndx:Begin Quiz1.logx1024 = 2(a)23(b)24(c)22(d)252.x= (logap27logap8logap125)=(loga6loga20)(a)1(b)3(c)3/2(d)-2/33.logc(10 +x)logcx= logc5)(a)2.5(b)4.5(c)5.5(d)7.5End Quiz

Section 8: Change of Bases 128. Change of BasesThere is one other rule for logarithms which is extremely useful in

practice. This relates logarithms in one base to logarithms in a dier- ent base. Most calculators will have, as standard, a facility for nding logarithms to the base 10 and also for logarithms to basee(natural logarithms). What happens if a logarithm to a dierent base, for

example 2, is required? The following is the rule that is needed.logac= logablogbc1. Proof of the above rule

Section 8: Change of Bases 13The most frequently used form of the rule is obtained by rearranging the rule on the previous page. We have log ac= logablogbcso logbc=logaclogab:Examples 6(a)Using a calculator we nd that log103 = 047712 and log

107 = 084510:Using the above rule,

log

37 =log107log103=084510047712= 177124:(b)We can do the same calculation using instead logs to basee.

Using a calculator, log

e3 = 109861 and loge7 = 194591: Thus log

37 =ln7ln3=194591109861= 177125:

The calculations have all been done to ve decimal places, which explains the slight dierence in answers. Section 8: Change of Bases 14(c)Given only that log105 = 069897 we can still nd log25;as follows. First we have 2 = 10=5 so log

102 = log10105

= log

1010log105

= 1069897 = 030103: Then log

25 =log105log102=069897030103= 232193:

Solutions to Quizzes 15Solutions to QuizzesSolution to Quiz:

Using rule 1 we have

log

315 + log306 = log3(1506) = log39

But 9 = 3

2so log

315 + log306 = log332= 2:End Quiz

Solutions to Quizzes 16Solution to Quiz:

Using rule 2 we have

log

212log234= log21234

Now we have 1234= 1243=1243= 16:

Thus log

212log234= log216 = log224:

Ifx= log224;then 2x= 24;sox= 4:End Quiz

Solutions to Quizzes 17Solution to Quiz:

Note that

004 = 4=100 = 1=25 = 1=52= 52:

Thus log
  1. log change of base formula examples