[PDF] Improvement of Electromagnetic Braking System in Vehicles - IRJET




Loading...







[PDF] How Electromagnets Work

9 août 2015 · Many electromagnets have an advantage over permanent magnets because they can be easily turned on and off, and increasing or decreasing the 

[PDF] Electromagnets - North Georgia EMC

Describe the relationship between electricity and magnetism • Compare an electromagnet to a bar magnet ENERGY USE AND DELIVERY – LESSON PLAN 3 3

[PDF] magnet and magnetism - Georgia Standards

If a long bar magnet is cut in half, each half becomes a complete magnet Solenoid magnets have several advantages over permanent magnets

Effective electromagnetic forces in thin sheet metal specimen

The economical advantages of electromagnetic forming are the short cycle times In this case losses by diffusion of the magnetic field through the sheet 

[PDF] Improvement of Electromagnetic Braking System in Vehicles - IRJET

through the coil, it produces a magnetic field which magnetizes the core into the bar magnet with the polarities Strong magnetic field is obtained by high 

[PDF] Magnet Design - ICTP

Small bar magnet 0 01 Tesla through that hole due to the earth's magnetic field Some Units and Conversion Numbers in Electromagnetism Magnetic 

[PDF] Improvement of Electromagnetic Braking System in Vehicles - IRJET 2976_3IRJET_V7I12133.pdf

International Research Journal of Engineering and Technology (IRJNT) e-ISSNJ 2395-0056

VolumeJ 07 IVVueJ 12 | Mec 2020 www.irjeW.neW p-ISSNJ 2395-0072

© 2020H IRJNT | ImpacW ŃacWor valueJ 7.529 | ISO 9001J2008 CerWifieT Journal | Page 764

Improvement of NlecWromagneWic Łraking SyVWem in VeUicleV

Yeshwanth S. Reddy

Department of Mechanical Engineering, New Horizon College of Engineering, Bangalore, Karnataka, INDIA

---------------------------------------------------------------------***----------------------------------------------------------------------

ABSTRCT J An elecWromagneWic brake iV a new anT innovaWive percepWion. NlecWromagneWic braking VyVWem iV a moTern

experWiVe braking VyVWem uVeT in ligUW moWor anT Ueavy moWor veUicleV. TUiV VyVWem iV a combinaWion of elecWro-

mecUanical percepWionV. TUe frequency of acciTenWV iV nowaTayV riVing Tue Wo incompeWenW braking VyVWem. HenceH in WUiV

projecW Wo we are inWegraWing Vun anT planeWary gear mecUaniVm Wo remove all 4 lug nuWV of WUe care wUeel VimulWaneouVly

wiWU WUe Uelp of primary power Vource. TUe macUine can be uVeT for WigUWening or looVening of lug nuWV of 3 TifferenW

moTelV of car by uVing a keypaT remoWe. TUe macUine iV expecWeT Wo be 40% more efficienW WUan WUe WraTiWional meWUoT of

looVening or WigUWening of WUe lug nuWV. In WUiV workH our aim Wo minimiYe WUe brake failure Wo avoiT WUe roaT acciTenWV anT

alVo reTuceV WUe mainWenance of braking VyVWem. An aTvanWage of WUiV VyVWem iV WUaW iW can be uVeT on any veUicle wiWU

minor moTificaWionV Wo WUe WranVmiVVion anT elecWrical VyVWemV.

1. INTROMUCTION

A braking VyVWem VUoulT proviTe reWarTaWion. InaTequaWe way of braking eVcorWV Wo acciTenWV moVW of WUe acciTenWV are

owing Wo TefecWive meanV of braking anT payable Wo WUeir incompeWenW Tevice Wo organiYe veUicle WUrougU WUe miVcUance.

NlecWromagneWic braking VyVWem conViVWV of VolenoiT coil wUicU iV employV principle of elecWromagneWic effecW of elecWrical

currenW for braking. TUiV iV amalgamaWion of elecWrical anT mecUanical componenWV Uere elecWrical energy iV uVeT Wo apply

braking Worque or reWarTaWion. IW proTuceV negaWive power wUicU iV Wwice of WUe power of macUine in a rapiT anT efficienW

way. NlecWromagneWic brakeV Uave been uVeT aV VupplemenWary reWarTaWion equipmenW in aTTiWion Wo WUe regular fricWion

brakeV on Ueavy veUicleV. TUe principle of braking in roaT veUicleV involveV WUe converVion of kineWic energy inWo WUermal

energy (UeaW). PUen VWepping on WUe brakeVH WUe Triver commanTV a VWopping force Veveral WimeV aV powerful aV WUe force

WUaW puWV WUe car in moWion anT TiVVipaWeV WUe aVVociaWeT kineWic energy aV UeaW. ŁrakeV muVW be able Wo arreVW WUe VpeeT of

a veUicle in a VUorW perioT of Wime regarTleVV Uow faVW WUe VpeeT iV. AV a reVulWH WUe brakeV are requireT Wo Uave WUe abiliWy

Wo generaWing UigU Worque anT abVorbing energy aW exWremely UigU raWeV for VUorW perioTV of Wime. ŁrakeV may be applieT

for a prolongeT perioT of Wime in Vome applicaWionV VucU aV a Ueavy veUicle TeVcenTing a long graTienW aW UigU VpeeT.

ŁrakeV muVW Uave WUe mecUaniVm Wo keep WUe UeaW abVorpWion capabiliWy for prolongeT perioTV of Wime.

Principle of elecWromagneWiVm iV uVeT in elecWromagneWic braking VyVWem. PUen cerWain amounW of currenW iV paVVeT

WUrougU a rounT conTucWor WUen iW proTuceV magneWic fielT wUicU iV uniform all over WUe conTucWor. TUe magneWic fielT

VWrengWU TepenTV on WUe currenW flowing WUrougU conTucWor anT WUe no of WurnV more WUe no of WurnV anT UigUer WUe

currenW flowing WUrougU conTucWor UigUer WUe magneWic fielT geWV creaWeT. SolenoiT iV WUe coil Uaving more no of WurnV anT

iW iV uVeT Wo proTuce UigU VWrengWU magneWic fielT wUicU iV uVeT in WUiV elecWromagneWic braking. PUen currenW iV paVVeT

WUrougU WUe coilH iW proTuceV a magneWic fielT wUicU magneWiYeV WUe core inWo WUe bar magneW wiWU WUe polariWieV. SWrong

magneWic fielT iV obWaineT by UigU currenWV of large Velf-inTucWion. HigU currenWV are noW alwayV feaVibleH wUicU iV wUy a

UigU Velf-inTucWion iV obWaineT by making a loop of wire in WUe VUape of a coilH a Vo-calleT VolenoiT. Óore currenW anT more

WurnV proTuce a VWronger magneWic fielT wUicU reVulWV in VWronger elecWromagneW. PUen currenW iV VwiWcUeT OŃŃ fielT

TiVappearV anT WUe iron core no longer a magneW. TUiV abiliWy of an elecWromagneW proviTeV a VWrong magneWic force of

aWWracWion. SUape geomeWry anT maWerial uVeT in conVWrucWion of elecWromagneW TeciTe WUe VUape anT VWrengWU of magneWic

fielT proTuceT by iW. TUe auWomobile inTuVWry iV alVo TevelopeT new braking VyVWem like Wo Trum brakeH TiVc brakeH

UyTraulic brakeH pneumaWic brakeH air brake anT elecWromagneWic brake. TUe TifferenW brakeV are working on TifferenW

principle operaWion (1-4). TUe main principle of elecWromagneWic brake Wo inTuceT kineWic energy inWo UeaW energy anT WUiV

Wype brake mainly working principle iV one roWaWing meWal TiVc in beWween WUe Wwo magneWV Wo apply WUe brake Wo inTuceT

elecWric currenW in circuiW Wo inTuceT magneWic fielT in armaWure Wo aWWracW WUe magneW Wo WUe roWaWing meWal TiVc anT

VWoppeT WUe roWaWion in Veveral Wime wUile applieT brake. PUen cerWain amounW of currenW iV paVVeT WUrougU a rounT

conTucWor WUen iW proTuceV magneWic fielT wUicU iV uniform all over WUe conTucWor. TUe magneWic fielT VWrengWU TepenTV on

WUe currenW flowing WUrougU conTucWor anT WUe no of WurnV anT UigUer WUe currenW flowing WUrougU conTucWor UigUer WUe

magneWic fielT geWV creaWeT. TUe key purpoVe of our aVVignmenW iV Wo plan anT improve an elecWromagneWic braking in

veUicleV. In aTTiWion WUe foremoVW objecWiveV are Wo unTerVWanT projecW planning anT execuWionH WUe fabricaWion WecUniqueV

in a mecUanical workVUopH WUe uVage of variouV mecUanical macUine WoolV anT alVo meaVuring WoolV anT plan Tay Wo Tay

Uuman life eaVier by appropriaWe employ of WoolV.

International Research Journal of Engineering and Technology (IRJNT) e-ISSNJ 2395-0056

VolumeJ 07 IVVueJ 12 | Mec 2020 www.irjeW.neW p-ISSNJ 2395-0072

© 2020H IRJNT | ImpacW ŃacWor valueJ 7.529 | ISO 9001J2008 CerWifieT Journal | Page 765

2. ÓNTHOMOLGOY

The elecWromagneWic brake iV a relaWively primiWive mecUaniVmH yeW iW employV complex elecWromagneWic anT WUermal

pUenomena. AV a reVulWH WUe calculaWion of brake Worque iV a complex WaVk. TUe caVe VWuTy of elecWromagneWic brake iV ToneH

anT liWeraWure Vurvey UaV been VWuTieT. Aluminium anT Copper are WUe preferreT maWerialV for WUe TiVc Tue Wo WUeir elecWricH

WUermalH anT magneWic properWieV. 3M CAM moTel iV prepareT baVeT on WUe requireT TimenVionV. MifferenW elecWromagneWV

anT TifferenW air gapV for WUe elecWromagneWV were Waken for purpoVe of compariVon anT TeVign of experimenWaWion.

Óaximum Łraking WorqueH Óaximum Łraking force anT SWopping MiVWance were calculaWeT. MeVign of elecWromagneWic

braking VyVWem iV Tone baVeT on WUe calculaWionV.

2.1 ÓaWerialV SelecWion

The maWerial of WUe roWor TiVc muVW alVo be opWimiYeT Wo minimiYe WUe Wime conVWanWH ɒ anT minimiYe WUe †‹•...ǯ• momenW of

inerWiaH I. TUere are Wwo VWrong canTiTaWeV in our VelecWion of maWerial wUicU are copper anT aluminium. TUiV evaluaWion iV

baVeT on WUe qualiWaWive reVulW of NquaWion. To minimiYe WUe Wime conVWanWH we muVW cUooVe WUe VmalleVW raWio of TenViWyH ɏ

Wo conTucWiviWyH ɐ from all WUe maWerialV available. Pe Uave evaluaWeT WUe raWioV for a few poVVible commercial maWerialV.

Pe finT WUaW copper anT aluminium rank Wop.

2.2 SelecWion of MiVc TUickneVV

The WUickneVV of WUe roWor TiVcH TH muVW alVo be opWimiYeT in orTer Wo minimiYe WUe Wime conVWanWH ɒ anT minimiYe WUe †‹•...ǯ•

momenW of inerWiaH I. TUe inerWia of WUe TiVc iV linearly proporWional Wo WUe WUickneVVH Vo minimiYing WUe TiVk raTiuV

minimiYeV WUe TiVk inerWia. TUe Wime conVWanW ToeV noW TepenT on WUe TiVc WUickneVV. TUuVH WUe opWimiYaWion problem

reTuceV Wo minimiYing TiVc WUickneVV wUile mainWaining enougU VWrucWural rigiTiWy (4).

Flow CUarW

Ńigure1. Ńlow CUarW for Porking of NlecWro ÓagneWic ŁrakeV

Disc RaTiuV

The raTiuV of WUe roWor TiVcH RH muVW alVo be opWimiYeT Wo minimiYe WUe Wime conVWanWH ɒ anT minimiYe WUe †‹•...ǯ• momenW of

inerWiaH I. TUe inerWia of WUe TiVc iV proporWional Wo WUe raTiuV Wo WUe fourWU powerH Vo minimiYing WUe TiVk raTiuV minimiYeV

Flow Chart:

no yeV

MOTOR ON AND INDUCES

ROTATIONAL MOTION

WHEEL

SPINS

IS ELECTROMA-

GNET

ENERGIZED?

ROTATION

OF WHEEL

IS STOPED

POWER

OFF

POWER ON

WHEEL

CONTINOUS

ON ITS

MOTION

International Research Journal of Engineering and Technology (IRJNT) e-ISSNJ 2395-0056

VolumeJ 07 IVVueJ 12 | Mec 2020 www.irjeW.neW p-ISSNJ 2395-0072

© 2020H IRJNT | ImpacW ŃacWor valueJ 7.529 | ISO 9001J2008 CerWifieT Journal | Page 766

the TiVk inerWia. TUe funcWionaliWy of WUe Wime conVWanW on WUe TiVc raTiuV iV noW aV clear. NquaWion WUaW WUe Wime conVWanW iV

proporWional Wo WUe raTiuV VquareTH Uowever WUe magneWic fluxH Ԅ(R), iV alVo a funcWion of WUe TiVc raTiuV becauVe WUe larger

WUe raTiuV WUe more magneWV can be mounWeT anT WUuV WUe VWronger WUe magneWic fielT. TUiV funcWionaliWy of WUe magneWic

fielT on WUe TiVc raTiuV iV unknown anT may only be evaluaWeT experimenWally (4).

ComponenWV RequireTJ

TUe componenWV (Ńig.2a-f) requireT are Electric ÓoWor Power Vupply Wheel Electromagnet Disc PlaWe Bearing Spring Solenoid Coil

Spring

A coil VpringH alVo known aV a Uelical VpringH iV a mecUanical Tevice wUicU iV Wypically uVeT Wo VWore energy anT

VubVequenWly releaVe iWH Wo abVorb VUockH or Wo mainWain a force beWween conWacWing VurfaceV. J Two compreVVion VpringV

are uVeT Wo puVU back WUe brake VUoe back in iWV poViWion.

Bearing

TUe purpoVe of a ball bearing iV Wo reTuce roWaWional fricWion anT VupporW raTial anT axial loaTV. IW acUieveV WUiV by uVing aW

leaVW WUree raceV Wo conWain WUe ballV anT WranVmiW WUe loaTV WUrougU WUe ballV. In moVW applicaWionVH one race iV VWaWionary

anT WUe oWUer iV aWWacUeT Wo WUe roWaWing aVVembly (e.g.H a Uub or VUafW). AV one of WUe bearing raceV roWaWeV iW cauVeV WUe

ballV Wo roWaWe aV well. ŁecauVe WUe ballV are rolling WUey Uave a mucU lower coefficienW of fricWion WUan if Wwo flaW VurfaceV

were VliTing againVW eacU oWUer.

ElecWromagneW

An elecWromagneW iV a Wype of magneW in wUicU WUe magneWic fielT iV proTuceT by an elecWric currenW. NlecWromagneWV

uVually conViVW of wire wounT inWo a coil. A currenW WUrougU WUe wire creaWeV a magneWic fielT wUicU iV concenWraWeT in WUe

Uole in WUe cenWer of WUe coil. TUe magneWic fielT TiVappearV wUen WUe currenW iV WurneT off. TUe wire WurnV are ofWen wounT

arounT a magneWic core maTe from ferromagneWic or ferrimagneWic maWerial VucU aV iron; WUe magneWic core concenWraWeV

WUe magneWic flux anT makeV a more powerful magneW. TUe main aTvanWage of an elecWromagneW over a permanenW magneW

iV WUaW WUe magneWic fielT can be quickly cUangeT by conWrolling WUe amounW of elecWric currenW in WUe winTing. HoweverH

unlike a permanenW magneW WUaW neeTV no powerH an elecWromagneW requireV a conWinuouV Vupply of currenW Wo mainWain

WUe magneWic fielT.

Electric ÓoWor

An NlecWric moWor iV an elecWrical Tevice WUaW converWV elecWrical energy inWo mecUanical energy. In normal moWoring moTeH

moVW elecWric moWorV operaWe WUrougU WUe inWeracWion beWween an elecWric moWorGV magneWic fielT anT winTing currenWV Wo

generaWe force wiWUin WUe moWor. NlecWric moWorV may be claVVifieT by elecWric power Vource WypeH inWernal conVWrucWionH

applicaWionH Wype of moWion ouWpuWH anT Vo on.

Wheel

PUeel geWV in moWion wiWU WUe Uelp of running moWor. ŁoWU moWor anT wUeel iV connecWeT wiWU WUe Uelp of connecWing cUain

anT cUain ring.

Power conWrol

TUiV TiviVion conViVWV of power Vupply Wo wUole VyVWem anT a VeparaWe power conWrol VyVWem Wo conWrol WUe moWion of

moWion.

International Research Journal of Engineering and Technology (IRJNT) e-ISSNJ 2395-0056

VolumeJ 07 IVVueJ 12 | Mec 2020 www.irjeW.neW p-ISSNJ 2395-0072

© 2020H IRJNT | ImpacW ŃacWor valueJ 7.529 | ISO 9001J2008 CerWifieT Journal | Page 767

a. Disc b. Spring c. Bearing d. Electromagnet e. Motor f. 3D CAM Model

CalculaWionV

Łreaking Torque V = ȫ *T*NI60 (mIVec) A = (v-u)IW (mIVec2) Ń= m*A (N) Łraking force T = (Ńx 0.5T)IR (NÓ) Łreaking PowerJ ON=0.5 x m x v2

3. RNSULTS

By uVing WUe elecWromagneWic brake aV VupplemenWary reWarTaWion equipmenWH WUe fricWionV brakeV can be uVeT leVV

frequenWly anT WUerefore pracWically never reacU UigU WemperaWureV. TUe brake liningV woulT laVW conViTerably longer

before requiring mainWenanceH anT WUe poWenWially Dz""ƒ‡ ˆƒ†‡dz problem coulT be avoiTeT. In reVearcU conTucWeT by a

Wruck manufacWurerH iW waV proveT WUaW WUe elecWromagneWic brake aVVumeT 80 percenW of WUe TuWy wUicU woulT oWUerwiVe

Uave been TemanTeT of WUe regular Vervice brake (ReverTin 1974). ŃurWUermoreH WUe elecWromagneWic brake prevenWV WUe

TangerV WUaW can ariVe from WUe prolongeT uVe of brakeV beyonT WUeir capabiliWy Wo TiVVipaWe UeaW. TUiV iV moVW likely Wo

occur wUile a veUicle TeVcenTing a long graTienW aW UigU VpeeT. TUe inVWallaWion of an elecWromagneWic brake iV noW very

TifficulW. IW ToeV noW neeT a VubViTiary cooling VyVWem. IW ToeV noW effecW on WUe efficiency of engine. NlecWromagneWic brake

alVo UaV beWWer conWrollabiliWy. TUermal VWabiliWy of WUe elecWromagneWic brakeV iV acUieveT by meanV of WUe convecWion anT

raTiaWion of WUe UeaW energy aW UigU WemperaWure. TUe elecWromagneWic brakeV Uave excellenW UeaW TiVVipaWion efficiency.

NlecWromagneWic brakeV Uave beWWer WUermal Tynamic performance WUan regular fricWion brakeV.

International Research Journal of Engineering and Technology (IRJNT) e-ISSNJ 2395-0056

VolumeJ 07 IVVueJ 12 | Mec 2020 www.irjeW.neW p-ISSNJ 2395-0072

© 2020H IRJNT | ImpacW ŃacWor valueJ 7.529 | ISO 9001J2008 CerWifieT Journal | Page 768

This reporW preVenWV WUe performance of an elecWromagneWic braking VyVWem wUicU incluTeV variouV componenWV wiWU iWV

coVW effecWiveneVV anT efficienW meWUoTologieV Wo uWiliYe WUe VupplieT energy. PiWU WUe applicaWion of WUe effecWive anT

VWrong elecWromagneW we can Uave greaWer efficienW braking VyVWem. In aTTiWionH iW iV founT WUaW elecWromagneWic brakeV

make up approximaWely 80% of all of WUe power applieT brake applicaWionV. 4. MISCUSSION ANM CONCLUSION

A Łraking SyVWem VUoulT proviTe reWarTaWion. IneffecWive way of braking leaTV Wo acciTenWV moVW of WUe acciTenWV are Tue Wo

faulWy way of braking anT Tue Wo WUeir inefficienW mecUaniVm Wo conWrol veUicle Turing WUe miVcUance. NlecWromagneWic

braking VyVWem conViVWV of VolenoiT coil wUicU iV uVeV principle of elecWromagneWic effecW of elecWrical currenW for braking.

TUiV iV combinaWion of elecWrical anT mecUanical componenWV Uere elecWrical energy iV uVeT Wo apply braking Worque or

reWarTaWion. IW proTuceV negaWive power wUicU iV Wwice of WUe power of macUine in a rapiT anT efficienW way TUe

elecWromagneWic brakeV UaV excellenW UeaW TiVVipaWion efficiency owing Wo WUe UigU WemperaWure of WUe Vurface of WUe TiVc

wUicU iV being cooleT anT alVo becauVe WUe flow of air WUrougU WUe cenWrifugal fan iV very rapiT. TUereforeH WUe curie

WemperaWure of WUe TiVc maWerial coulT never been reacUeT (ReverTin 1974). TUe pracWical locaWion of WUe elecWromagneWic

brakeV prevenWV WUe TirecW impingemenW of air on WUe brakeV cauVeT by WUe moWion of WUe veUicle. Any air flow movemenW

wiWUin WUe cUaVViV of WUe veUicle iV founT Wo Uave a relaWively inVignificanW effecW on WUe air flow anT Uence WemperaWure of

boWU fronW anT rear TiVcV. NlecWromagneWic braking VyVWem iV founT Wo be more reliable aV compareT Wo oWUer braking

VyVWemV. In oil braking VyVWem or air braking VyVWem evenH a Vmall leakage may leaT Wo compleWe failure of brakeV. PUile in

elecWromagneWic braking coilV anT firing circuiWV are aWWacUeT inTiviTually on eacU wUeelH even any coil failV WUe brake ToeV

noW compleWely failV remaining WUree coil workV properly. AnT WUiV VyVWem neeTV very liWWle of mainWenance. In aTTiWionH iW iV

founT WUaW elecWromagneWic brakeV make up approximaWely 80% of all of WUe power applieT brake applicaWionV.

NlecWromagneWic brakeV Uave been uVeT aV VupplemenWary reWarTaWion equipmenW in aTTiWion Wo WUe regular fricWion brakeV

on Ueavy veUicleV. TUe fricWionV brakeV can be uVeT leVV frequenWly anT WUerefore pracWically never reacU UigU

WemperaWureV. TUe brake liningV woulT laVW conViTerably longer before requiring mainWenance anT WUe poWenWially Ȇ""ƒ‡

faTe problem coulT be avoiTeT. TUiV enUanceT braking VyVWem noW only UelpV in effecWive braking buW alVo UelpV in avoiTing

WUe acciTenWV anT reTucing WUe frequency of acciTenWV Wo a minimum. ŃurWUermoreH WUe elecWromagneWic brakeV prevenW WUe

Tanger WUaW can ariVe from WUe prolongeT uVe of brake beyonT WUeir capabiliWy Wo TiVVipaWe UeaW.

NlecWromagneWic brakeV Uave numerouV preferenceV over fricWional Vlowing mecUaniVm. TUe blenT of Vwirl preVenW anT

aWWracWive powerV makeV WUiV brake more VucceVVful. TUiV brake can be uWiliYeT aV aVViVWanW VWopping mecUaniVm in veUicle.

TUe uWiliYaWion of abV can be TiVmiVVeT by uWiliYing a Vmaller Vcale conWrolleT elecWromagneWic framework. IW can be uWiliYeT

aV a parW of rail menWorV Wo TeceleraWe WUe prepare moving in faVW. Óix of WUeVe brakeV expanTV WUe brake life anT acW like

compleWely VWackeT brakeV. TUeVe brakeV can be uWiliYeT aV a parW of weW conTiWionH Vo WUere iV no uWiliYaWion of againVW

Vlipping inVWrumenW. IW iV compleWely elecWrically conWrolleT wUicU bringV abouW leVV miVUapV. TUe braking power TelivereT

in WUiV brake iV noW aV mucU aV WUe plaWe brakeV. SubVequenWlyH iW can be uWiliYeT aV an auxiliary or criViV Vlowing mecUaniVm

in WUe auWoV. PiWU all WUe aTvanWageV of elecWromagneWic brakeV over fricWion brakeVH WUey Uave been wiTely uVeT on Ueavy

veUicleV wUere WUe Ǯ""ƒ‡ ˆƒ†‹‰ǯ problem iV VeriouV. TUe Vame concepW iV being TevelopeT for applicaWion on ligUWer

veUicleV. AfWer calculaWing WUe Worque of WUe elecWromagneWic brake VyVWem wiWU elecWromagneWic braking force anT braking

power experimenW are carrieT ouW. AV WUe reVulW VUowV WUaW WUe elecWromagneWic brake VyVWem can recover WUe energy of

WUe car Turing WUe brake proceVVH anT leW WUe car brake effecWively.

REFERENCES

1. Electro ÓagneWic Łraking SyVWem G. Guna*H S. MineVU MeparWmenW of AuWomobile NngineeringH SaveeWUa ScUool of

NngineeringH SaveeWUa UniverViWyH CUennai.

2. STUDY ANM ŃAŁRICATION OŃ NLNCTROÓAGNNTIC ŁRAOING SYSTNÓ. Porking Paper · AuguVW 2017

3. International ReVearcU Journal of Nngineering anT TecUnology (IRJNT) VolumeJ 05 IVVueJ 04 | Apr-2018.

4. IOSR Journal of ÓecUanical anT Civil Nngineering (IOSR-JÓCN)e-ISSNJ 2278-1684Hp-ISSNJ 2320-334XH Volume 13H

IVVue 6 Ver. VI (Nov. - Mec. 2016).


Politique de confidentialité -Privacy policy