Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A




Loading...







AERODYNAMIC STUDY OF A TWO-ELEMENTS WINGSAIL FOR

10 mars 2015 Fiumara Alessandro and Senter

Development of a simulation tool coupling hydrodynamics and

31 janv. 2019 hydrodynamics and unsteady aerodynamics to study. Floating Wind Turbines. Leroy Vincent Jean-Christophe Gilloteaux

BASIC AERODYNAMICS

Aerodynamics is the study of the dynamics of gases or the interaction between moving object and atmosphere causing an airflow around a body.

Experimental study of the aerodynamic noise produced by flow-body

21 mai 2021 Experimental study of the aerodynamic noise produced by flow-body ... airfoil is studied in an anechoic wind tunnel especially the.

Experimental study and modelling of unsteady aerodynamic forces

14 mai 2018 Experimental study on flat plate in high-amplitude pitch ramp motion ... In both studies a better mastering of the unsteady aerodynamics in ...

Speech aerodynamics database - Archive ouverte HAL

9 mars 2020 Acoustic signal of speech sounds is underlain by aerodynamic principles. ... in which the study of aerodynamic constraints on speech was an ...

Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A

14 sept. 2017 among which the study of the "Lombard speech" - louder voice and tendency ... Studies directly relating to the aerodynamic aspects of vocal ...

Size effects on insect hovering aerodynamics: an integrated

4 mars 2009 insect hovering on flapping-wing aerodynamics is of interest to both the ... Studies on unsteady aerodynamics of a single flapping-.

Aerodynamic Study of an Ahmed Body with the help of CFD Simulation

12 juin 2020 Automotive aerodynamics comprises of the study of aerodynamics of road vehicles. Its main goals are reducing drag.

1 A STUDY OF THE MOTION AND AERODYNAMIC HEATING OF

A STUDY OF THE MOTION AND AERODYNAMIC. HEATING OF BALLISTIC MISSILES ENTERING THE. EARTH'S ATMOSPHERE AT HIGH SUPERSONIC. SPEEDS1.

Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A 700_3document >G A/, ?H@yR83d3e3 ?iiTb,ff?HXb+B2M+2f?H@yR83d3e3 am#KBii2/ QM R9 a2T kyRd >GBb  KmHiB@/Bb+BTHBM`v QT2M ++2bb `+?Bp2 7Q` i?2 /2TQbBi M/ /Bbb2KBMiBQM Q7 b+B@

2MiB}+ `2b2`+? /Q+mK2Mib- r?2i?2` i?2v `2 Tm#@

HBb?2/ Q` MQiX h?2 /Q+mK2Mib Kv +QK2 7`QK

i2+?BM; M/ `2b2`+? BMbiBimiBQMb BM 6`M+2 Q` #`Q/- Q` 7`QK Tm#HB+ Q` T`Bpi2 `2b2`+? +2Mi2`bX

Gö`+?Bp2 Qmp2`i2 THm`B/Bb+BTHBMB`2>G- 2bi

/2biBMû2 m /ûT¬i 2i ¨ H /BzmbBQM /2 /Q+mK2Mib b+B2MiB}[m2b /2 MBp2m `2+?2`+?2- Tm#HBûb Qm MQM- ûKMMi /2b ûi#HBbb2K2Mib /ö2Mb2B;M2K2Mi 2i /2 `2+?2`+?2 7`MÏBb Qm ûi`M;2`b- /2b H#Q`iQB`2b

Tm#HB+b Qm T`BpûbX

1biBKiBM; oQ+H 1zQ`i 7`QK i?2 2`Q/vMKB+b Q7

G#BH 6`B+iBp2b,  62bB#BHBiv aim/v

hQ +Bi2 i?Bb p2`bBQM, uQ?MM J2vM/B2`- MBi 1H >DD- JB+?2H SBi2`KMM- h?B2``v G2;Qm- MiQBM2 :BQpMMBX 1biBKiBM; oQ+H 1zQ`i 7`QK i?2 2`Q/vMKB+b Q7 G#BH 6`B+iBp2b,  62bB#BHBiv aim/vX CQm`MH Q7 oQB+2- kyR3- jk UeV- TTXddRX2R8@ddRX2k9X RyXRyRefDXDpQB+2XkyRdXy3XyRyX ?H@yR83d3e3 ESTIMATING VOCAL EFFORT FROM THE AERODYNAMICS OF LABIAL FRICATIVES: Yohann Meynadier1, Anita El Hajj1, Michel Pitermann1, 1, Antoine Giovanni12

1Aix Marseille Univ, CNRS, LPL, Aix

2 airflow resistance;

Study D

Results and Conclusion:

1

INTRODUCTION

Vocal fol

2 of -The The parameter indicative of the effective force necessary to produce ; close to 0 for vowels 3 normal subject, , 4 R

OBJECTIVE

The goal of

this 5 fricative

MATERIALS AND METHOD

This feasibility study was

accuracy 3/s), 6 T D-z$z/ 7 3/s) 3/s (RStudio Inc.; Boston, . The

EXPERIMENT 1

The efficiency of an indirect measurement of Rglo via Rlab of fricatives

Results

Table 1

8 decreases when

Discussion

The

9 even more significant than for /f/. or Frazer 10 constriction is long enough. Nevertheless,

EXPERIMENT 2

Experiment 2

11

Results

Airflow

The results on airflow v

3/s3/s

Air p

As represented in

- 12 22.

Airway resistances

Means and statistical differences

3/s 3/s

3/s) 3/s)

3/s in Threshold

3/s) 3/s). For

3/s)3/s

13

Figure 4 represents the linear regression

2

Discussion

The objective of thi

14

Fl

15 features

CONCLUSION

The general hypothesis of our work was that when a 16 inexperienced subjects producing [1]

J Speech 2004; 551.

J Voice. 2012; 26(5): 665.e9

J Voice.

Ann

Eur Arch Otorhinolaryngol. 2009;

J Voice. 2015; 29(5): 530

Speech Production and Speech Modelling.

Les Cahiers d'Oto

.1990;

J Acoust Soc Am. 2016; 140(1): 45.

J . 2016; 140(1): 369. 17 [12]

Int J Speech Lang Pathol. 2016; 21: 1

J Phon. 1973; 1(1):

J Acoust Soc Am. 1995; 97(5 Pt

J Acoust Soc Am.

Logop Phoniatr

J200 (5): J.

J Acoust Soc Am.

1992;

Folia Phoniatr Logo. 1996;

J Voice. 2001; Ann Otol Rhinol Laryngol. 2013;

L'aérodynamique de la voix

J Speech

. 18 [25]

J Acoust Soc Am. 2000; 107(6): 3438

J Acoust Soc Am. 635.

J Acoust Soc Am.

J Speech Hear.

J Phon.

J Acoust Soc Am.

J Speech Hear Disord.

J Voice; 1995; 9(2): 149155.

Eur J Disord

. 1995; 30(4): 435449. J

J Voice. 1992; 6(3): 235245.

Proc . Marseille, France;

Logop Phoniatr Voco.

19 [38] Proceedings of Larynx 97. Marseille, France; 1997: 6972. are involved. Biometrika. 1947; 34(135. Proc.

J Speech Lang Hear

J Speech Lang

208.
Approximating Subglottal Pressure from Oral Pressure: A Methodological Study. ccessed April 2017.

Acoustic phonetics. Cambridge, MA: MIT Press

Phonetica. 210.
J . 1979; 7: 357373.

J Acoust

801.

Nord J Ling.

J Acoust Soc Am. 1623.

Logoped Phoniatr. 1982; 16:

Laryngeal function in phonation and respiration. Boston, USA: College 20 [52]

Speech Production: Models, Phonetic Processes,

. Macquarie University, Sydney, Australia: Psychology

J Voice. 1996; 10(3): 236

Table 1: Difference between Ps and Po in hPa (ǻ ǻ

0.64 0.83

slope t(34)=4.98 p = 1.81e-5 t(33)=7.79 p = 5.64e-9 t(34)=10.50 p = 3.31e-12 t(28)=11.84 p = 2.06e-12 t(135)=72.37 p < 2.2e-16 t(21)=35.60 p < 2e-16

0.32 0.20

slope p t(33)=3.27 p = 2.5e-3 t(33)=4.11 p = 2.5e-4 t(34)=5.33 p = 6.37e-6 t(28)=2.68 p = 1.2e-2 t(135)=36.29 p < 2e-16 t(21)=23.24 p < 2e-16 (in 3/s) p p p (0.07)ns (0.05)ns (0.05)< 0.01 (0.04) (0.07)ns (0.07)ns (0.08)< 0.01 (0.10) (0.13)ns (0.55)ns (0.19)< 0.01 (0.28) 21

Table 4 (in hPa)

p p p (0.38)< 0.01 (0.69)< 0.01 (2.13)< 0.01 (3.89) (0.46)< 0.01 (0.88)< 0.01 (2.44)< 0.01 (3.71) (0.61)0.015 (0.58)< 0.01 (1.50)< 0.01 (1.98) (0.41)< 0.01 (0.78)< 0.01 (2.45)< 0.01 (2.66) (0.43)< 0.01 (0.78)< 0.01 (2.66)< 0.01 (1.72) 3/s) p p p (3.48)< 0.01 (3.85)< 0.01 (9.17)< 0.01 (9.81) (4.20)< 0.01 (9.02)< 0.01 (12.90)ns (9.31) (2.95)0.017 (5.06)< 0.01 (8.32)< 0.01 (7.34) (1.70)ns (1.64)< 0.01 (4.89)ns (6.39) (1.71)< 0.01 (2.85)< 0.01 (9.20)< 0.01 (15.01)

Figure

22
3/s 23

Figure 4


Politique de confidentialité -Privacy policy