[PDF] [PDF] Logique et raisonnements - Exo7 - Cours de mathématiques





Previous PDF Next PDF



[PDF] Différents types de raisonnement en mathématiques

b) Equivalence Définition : L'équivalence logique de deux évènements représente le faite que deux évènements sont équivalents 



[PDF] Logique

C'est l'objet des paragraphes suivants 3 2 Equivalence logique Définition 1 Deux propositions équivalentes P et Q sont deux propositions simultanément vraies 



[PDF] Chapitre 4 Quelques types de raisonnement

Il est fortement conseillé de démontrer une équivalence P ?? Q en montrant que les deux Supposons que 0 soit racine de A Par définition on



[PDF] Logique et raisonnements - Exo7 - Cours de mathématiques

Voici la définition mathématique de la continuité d'une fonction f : I ? Le raisonnement par contraposition est basé sur l'équivalence suivante (voir 



[PDF] Quelques notions de logique - CEREMADE Dauphine

Définition : une proposition est un énoncé mathématique qui affirme une propriété la base de ce qu'on appellera le raisonnement “par contraposée"



[PDF] Le raisonnement mathématique Limplication une notion polysémique

Il s'agit de passer d'une définition en compréhension à une définition en Le traitement de l'implication comme une équivalence va donc susciter



[PDF] Module Mathématiques I : Alg`ebre - Faculté des Sciences de Rabat

Il s'agit de se familiariser `a l'expression mathématique du raisonnement Définition 5 2 On appelle relation d'équivalence une relation qui vérifie les



[PDF] Démontrer une implication ou une équivalence

Conclusion : on a bien montré l'implication P =? Q Pour montrer l'équivalence P ?? Q on peut : ou bien raisonner par double implication c'est-à- 



[PDF] Logique et raisonnements

Raisonner par implication ou par équivalence Définition : Négation d'une proposition — Définition : Conjonction de deux propositions —



[PDF] Logique

A partir d'une ou plusieurs propositions on peut en construire d'autres C'est l'objet des paragraphes suivants 3 2 Equivalence logique Définition 1



[PDF] Quelques équivalences logiques utiles • Preuve par algèbre de

Ces raisonnements sont basés sur la tautologie modus ponens : ((p ? (p ? q)) ? q) ? V (c -à-d toujours vraie n' 



[PDF] Chapitre 4 Quelques types de raisonnement

Par deux implications Il est fortement conseillé de démontrer une équivalence P ?? Q en montrant que les deux implications P =? Q et Q =? P sont vraies



[PDF] Logique et raisonnements - Exo7 - Cours de mathématiques

Voici la définition mathématique de la continuité d'une fonction f : I ? Le raisonnement par contraposition est basé sur l'équivalence suivante (voir 



[PDF] Quelques notions de logique - ceremade

Définition : La négation de la proposition P noté nonP est la proposition qui affirme la base de ce qu'on appellera le raisonnement “par contraposée"



[PDF] Logique et raisonnement

Équivalence : deux propositions sont équivalentes lorsqu'elles ont la même valeur de vérité : soit elles sont vraies en même temps soit elles sont fausses en 



[PDF] Le raisonnement par équivalence en début de 1 S

Ce type de raisonnement est marqué par l'utilisation des expressions « si et seulement si » (pour les équations de droites ou les ensembles de définition) 



[PDF] Logique - Institut de Mathématiques de Toulouse

Définition En logique une proposition (ou assertion) est une phrase à laquelle on peut attribuer une valeur de vérité (vrai ou faux) On note 1 le vrai 

  • Comment montrer l'équivalence ?

    Pour montrer une équivalence en raisonnant par équivalences, il faut justifier si nécessaire les équivalences écrites à chaque étape. Si l'ombre d'un doute plane, il faut démontrer l'équivalence demandée en raisonnant par double implication. On sait que P est vraie, et on déduit que Q est vraie.
  • Comment montrer que deux propositions sont équivalentes ?

    En lisant la table du vérité de l'équivalence, on constate que deux propositions sont équivalentes si et seulement si elles ont la même "valeur de vérité", c'est à dire si elles sont soit toutes les deux vraies, soit toutes les deux fausses.
  • Comment démontrer qu'une implication est vraie ?

    Démonstration d'une implication
    Pour montrer que P implique Q , on suppose que P est vrai, et on démontre Q sous cette hypothèse. Cela suffit puisque si P est faux alors l'implication P?Q P ? Q est toujours vraie, quelle que soit la véracité de Q .
  • La seule façon de démontrer qu'une implication est fausse (par exemple, pour montrer que “pour tout x ? R, si x2 ? 1 alors x ? 1” est fausse), c'est de produire un contre-exemple qui vérifie la prémisse et pas la conclusion (ici par exemple, -3 vérifie (?3)2 ? 1 mais pas ?3 ? 1).

Logique et

raisonnementsVidéo"partie 1. Logique

Vidéo"partie 2. Raisonnements

Fiche d"exercices‡Logique, ensembles, raisonnements

Quelques motivations

•Il est important d"avoir unlangage rigoureux. La langue française est souvent ambigüe. Prenons

l"exemple de la conjonction "ou»; au restaurant "fromage ou dessert» signifie l"un ou l"autre mais pas

les deux. Par contre si dans un jeu de carte on cherche "les as ou les coeurs» alors il ne faut pas exclure

l"as de coeur. Autre exemple : que répondre à la question "As-tu10euros en poche?» si l"on dispose de

15 euros?

Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d"une fonction est

souvent expliquée par "on trace le graphe sans lever le crayon». Il est clair que c"est une définition peu

satisfaisante. Voici la définition mathématique de la continuité d"une fonctionf:I!Ren un point

x02I:

8 >09 >08x2I(jxx0j< =) jf(x)f(x0)j< ).

C"est le but de ce chapitre de rendre cette ligne plus claire! C"est lalogique.

Enfin les mathématiques tentent dedistinguer le vrai du faux. Par exemple "Est-ce qu"une augmentation

de20%, puis de30%est plus intéressante qu"une augmentation de50%?». Vous pouvez penser "oui»

ou "non», mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette

démarche doit être convaincante pour vous mais aussi pour les autres. On parle deraisonnement.

Les mathématiques sont un langage pour s"exprimer rigoureusement, adapté aux phénomènes complexes,

qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider - ou d"infirmer - une

hypothèse et de l"expliquer à autrui.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE2

1. Logique

1.1. Assertions

Uneassertionest une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples :

"Il pleut.» "Je suis plus grand que toi.» " 2+2=4 » " 23=7 » "Pour tout x2R, on a x2>0.»

"Pour tout z2C, on ajzj=1.»SiPest une assertion etQest une autre assertion, nous allons définir de nouvelles assertions construites à

partir dePet deQ.

L"opérateur logique "et»

L"assertion "PetQ» est vraie siPest vraie etQest vraie. L"assertion "P et Q» est fausse sinon.

On résume ceci en unetable de vérité:

PnQVF VVF FFF

FIGURE1.1 - Table de vérité de "P et Q»

Par exemple siPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est coeur» alors l"assertion

"P et Q» est vraie si la carte est l"as de coeur et est fausse pour toute autre carte.

L"opérateur logique "ou»

L"assertion "PouQ» est vraie si l"une (au moins) des deux assertionsPouQest vraie. L"assertion "Pou

Q» est fausse si les deux assertionsPetQsont fausses.

On reprend ceci dans la table de vérité :

PnQVF VVV FVF

FIGURE1.2 - Table de vérité de "P ou Q»

SiPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est coeur» alors l"assertion "PouQ»

est vraie si la carte est un as ou bien un coeur (en particulier elle est vraie pour l"as de coeur).

Remarque.

Pour définir les opérateurs "ou», "et» on fait appel à une phrase en français utilisant les motsou,et! Les

tables de vérités permettent d"éviter ce problème.

La négation "non»

L"assertion "nonP» est vraie siPest fausse, et fausse siPest vraie.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE3

PVF nonPFV

FIGURE1.3 - Table de vérité de "non P»

L"implication=)

La définition mathématique est la suivante :L"assertion "(non P) ou Q» est notée "P=)Q».Sa table de vérité est donc la suivante :

PnQVF VVF FVV

FIGURE1.4 - Table de vérité de "P=)Q»

L"assertion "P=)Q» se lit en français "P implique Q». Elle se lit souvent aussi "si P est vraie alors Q est vraie» ou "si P alors Q».

Par exemple :

" 06x625=)px65 » est vraie (prendre la racine carrée). "x2]1,4[ =)x2+3x4>0 » est vraie (étudier le binôme). " sin() =0=)=0 » est fausse (regarder pour=2par exemple). •"2+2=5=)p2=2» est vraie! Eh oui, siPest fausse alors l"assertion "P=)Q» est toujours vraie.

L"équivalence()

L"équivalenceest définie par :"P()Q» est l"assertion "(P=)Q) et (Q=)P)».

On dira "Pest équivalent àQ» ou "Péquivaut àQ» ou "Psi et seulement siQ». Cette assertion est vraie

lorsquePetQsont vraies ou lorsquePetQsont fausses. La table de vérité est : PnQVF VVF FFV

FIGURE1.5 - Table de vérité de "P()Q»

Exemples :

Pourx,x02R, l"équivalence "xx0=0()(x=0ou x0=0)» est vraie. Voici une équivalencetoujours fausse(quelle que soit l"assertionP) : "P()non(P)».

On s"intéresse davantage aux assertions vraies qu"aux fausses, aussi dans la pratique et en dehors de ce

chapitre on écrira "P()Q» ou "P=)Q» uniquement lorsque ce sont des assertions vraies. Par

exemple si l"on écrit "P()Q» cela sous-entend "P()Qest vraie». Attention rien ne dit quePetQ

soient vraies. Cela signifie quePetQsont vraies en même temps ou fausses en même temps.Proposition 1.

Soient P,Q,R trois assertions. Nous avons les équivalences (vraies) suivantes : 1.

P ()non(non(P))

LOGIQUE ET RAISONNEMENTS1. LOGIQUE42.(PetQ)()(QetP)

3.(PouQ)()(QouP)

4.non(PetQ)()(nonP)ou(nonQ)

5.non(PouQ)()(nonP)et(nonQ)

6.Pet(QouR)()(PetQ)ou(PetR)

7.Pou(QetR)()(PouQ)et(PouR)

8. " P =)Q »()"non(Q) =)non(P)»Démonstration.Voici des exemples de démonstrations :

4.Il suffit de comparer les deux assertions "non(P et Q)» et "(non P)ou(non Q)» pour toutes les valeurs

possibles dePetQ. Par exemple siPest vrai etQest vrai alors "PetQ» est vrai donc "non(P et Q)»

est faux; d"autre part (nonP) est faux, (nonQ) est faux donc "(non P)ou(non Q)» est faux. Ainsi dans

ce premier cas les assertions sont toutes les deux fausses. On dresse ainsi les deux tables de vérités et

comme elles sont égales les deux assertions sont équivalentes. PnQVF VFV FVV FIGURE1.6 - Tables de vérité de "non(P et Q)» et de "(non P)ou(non Q)» 6.

On fait la même chose mais il y a trois variables :P,Q,R. On compare donc les tables de vérité d"abord

dans le cas oùPest vrai (à gauche), puis dans le cas oùPest faux (à droite). Dans les deux cas les deux

assertions "P et(Q ou R)» et "(P et Q)ou(P et R)» ont la même table de vérité donc les assertions

sont équivalentes. QnRVF VVV FVF QnRVF VFF FFF 8.

Par définition, l"implication "P=)Q» est l"assertion "(nonP) ouQ». Donc l"implication "non(Q) =)

non

(P)» est équivalente à "non(non(Q))ou non(P)» qui équivaut encore à "Q ou non(P)» et donc est

équivalente à "P=)Q». On aurait aussi pu encore une fois dresser les deux tables de vérité et voir

qu"elles sont égales.1.2. Quantificateurs

Le quantificateur8: "pour tout»

Une assertionPpeut dépendre d"un paramètrex, par exemple "x2>1», l"assertionP(x)est vraie ou

fausse selon la valeur dex.

L"assertion

8x2E P(x)

est une assertion vraie lorsque les assertionsP(x)sont vraies pour tous les élémentsxde l"ensembleE.

On lit "Pour tout x appartenant à E, P(x)», sous-entendu "Pour tout x appartenant à E, P(x)est vraie».

Par exemple :

"8x2[1,+1[ (x2>1)» est une assertion vraie. "8x2R(x2>1)» est une assertion fausse. "8n2Nn(n+1)est divisible par2 » est vraie.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE5

Le quantificateur9: "il existe»

L"assertion

9x2E P(x)est une assertion vraie lorsque l"on peut trouver au moins unxdeEpour lequelP(x)est vraie. On lit "il

existe x appartenant à E tel que P(x)(soit vraie)».

Par exemple :

"9x2R(x(x1)<0)» est vraie (par exemplex=12 vérifie bien la propriété). "9n2Nn2n>n» est vraie (il y a plein de choix, par exemplen=3convient, mais aussin=10ou mêmen=100, un seul suffit pour dire que l"assertion est vraie). "9x2R(x2=1)» est fausse (aucun réel au carré ne donnera un nombre négatif). La négation des quantificateursLa négation de "8x2E P(x)» est "9x2E non P(x)» . Par exemple la négation de "8x2[1,+1[ (x2>1)» est l"assertion "9x2[1,+1[ (x2<1)». En

effet la négation dex2>1 est non(x2>1)mais s"écrit plus simplementx2<1.La négation de "9x2E P(x)» est "8x2E non P(x)».Voici des exemples :

La négation de "9z2C(z2+z+1=0)» est "8z2C(z2+z+16=0)». La négation de "8x2R(x+12Z)» est "9x2R(x+1=2Z)». Ce n"est pas plus difficile d"écrire la négation de phrases complexes. Pour l"assertion :

8x2R9y>0(x+y>10)

sa négation est

9x2R8y>0(x+y610).

Remarques

L"ordre des quantificateurs est très important. Par exemple les deux phrases logiques

8x2R9y2R(x+y>0)et9y2R8x2R(x+y>0).

sont différentes. La première est vraie, la seconde est fausse. En effet une phrase logique se lit de gauche à

droite, ainsi la première phrase affirme "Pour tout réelx, il existe un réely(qui peut donc dépendre dex)

tel quex+y>0.» (par exemple on peut prendrey=jxj+1). C"est donc une phrase vraie. Par contre la

deuxième se lit : "Il existe un réely, tel que pour tout réelx,x+y>0.» Cette phrase est fausse, cela ne

peut pas être le mêmeyqui convient pour tous lesx!

On retrouve la même différence dans les phrases en français suivantes. Voici une phrase vraie "Pour toute

personne, il existe un numéro de téléphone», bien sûr le numéro dépend de la personne. Par contre cette

phrase est fausse : "Il existe un numéro, pour toutes les personnes». Ce serait le même numéro pour tout le

monde!

Terminons avec d"autres remarques.

Quand on écrit "9x2R(f(x) =0)» cela signifie juste qu"il existe un réel pour lequelfs"annule. Rien

ne dit que cexest unique. Dans un premier temps vous pouvez lire la phrase ainsi : "il existeau moins

un réelxtel quef(x) =0». Afin de préciser quefs"annule en une unique valeur, on rajoute un point

d"exclamation :

9!x2R(f(x) =0).

LOGIQUE ET RAISONNEMENTS2. RAISONNEMENTS6

•Pour la négation d"une phrase logique, il n"est pas nécessaire de savoir si la phrase est fausse ou vraie.

Le procédé est algorithmique : on change le "pour tout» en "il existe» et inversement, puis on prend la

négation de l"assertionP.

Pour la négation d"une proposition, il faut être précis : la négation de l"inégalité stricte "<» est l"inégalité

large ">», et inversement.

Les quantificateurs ne sont pas des abréviations. Soit vous écrivez une phrase en français : "Pour tout

réel x, si f(x) =1alors x>0.» , soit vous écrivez la phrase logique :

8x2R(f(x) =1=)x>0).

Mais surtout n"écrivez pas "8xréel, sif(x) =1=)xpositif ou nul». Enfin, pour passer d"une ligne à

l"autre d"un raisonnement, préférez plutôt "donc» à "=)». Il est défendu d"écrire69,6=). Ces symboles n"existent pas!Mini-exercices. 1.

Écrire la table de vérité du "ou exclusif». (C"est leoudans la phrase "fromage ou dessert», l"un ou

l"autre mais pas les deux.) 2. Écrire la table de vérité de " non (P et Q)». Que remarquez vous? 3.

Écrire la négation de " P=)Q».

4. Démontrer les assertions restantes de la proposition ??. 5.

Écrire la négation de " P et(Q ou R)».

6.

Écrire à l"aide des quantificateurs la phrase suivante : "Pour tout nombre réel, son carré est positif».

Puis écrire la négation.

7.

Mêmes questions avec les phrases : "Pour chaque réel, je peux trouver un entier relatif tel que leur

produit soit strictement plus grand que1». Puis "Pour tout entiern, il existe un unique réelxtel que

exp(x)égale n».2. Raisonnements Voici des méthodes classiques de raisonnements.

2.1. Raisonnement direct

On veut montrer que l"assertion "P=)Q» est vraie. On suppose quePest vraie et on montre qu"alorsQ est vraie. C"est la méthode à laquelle vous êtes le plus habitué.

Exemple 1.

Montrer que sia,b2Qalorsa+b2Q.

Démonstration.

Prenonsa2Q,b2Q. Rappelons que les rationnelsQsont l"ensemble des réels s"écrivant pq avecp2Zetq2N. Alorsa=pqpour un certainp2Zet un certainq2N. De mêmeb=p0q

0avecp02Zetq02N. Maintenant

a+b=pq +p0q

0=pq0+qp0qq

0.

Or le numérateurpq0+qp0est bien un élément deZ; le dénominateurqq0est lui un élément deN. Donc

a+bs"écrit bien de la formea+b=p00q

00avecp002Z,q002N. Ainsia+b2Q.

LOGIQUE ET RAISONNEMENTS2. RAISONNEMENTS7

2.2. Cas par casSi l"on souhaite vérifier une assertionP(x)pour tous lesxdans un ensembleE, on montre l"assertion pour

lesxdans une partieAdeE, puis pour lesxn"appartenant pas àA. C"est la méthode dedisjonctionou du

cas par cas.

Exemple 2.

Montrer que pour toutx2R,jx1j6x2x+1.

Démonstration.Soitx2R. Nous distinguons deux cas. Premier cas :x>1.Alorsjx1j=x1. Calculons alorsx2x+1jx1j. x

2x+1jx1j=x2x+1(x1)

=x22x+2 = (x1)2+1>0.

Ainsix2x+1jx1j>0 et doncx2x+1>jx1j.

Deuxièmecas:x<

1.Alorsjx1j=(x1). Nousobtenonsx2x+1jx1j=x2x+1+(x1) =x2>0.

Et doncx2x+1>jx1j.

Conclusion.Dans tous les casjx1j6x2x+1.2.3. Contraposée

Le raisonnement parcontrapositionest basé sur l"équivalence suivante (voir la proposition??) :L"assertion "P=)Q» est équivalente à "non(Q) =)non(P)».

Donc si l"on souhaite montrer l"assertion "P=)Q», on montre en fait que sinon(Q)est vraie alorsnon(P)

est vraie.quotesdbs_dbs35.pdfusesText_40
[PDF] raisonnement par l'absurde exercices

[PDF] fiche de revision geographie 3eme

[PDF] polarité des molécules exercice

[PDF] exercice polarité 1s

[PDF] hcl polaire ou apolaire

[PDF] molécule polaire exercice corrigé

[PDF] exemple de raisonnement par analogie

[PDF] pcl3 polaire

[PDF] taille organite

[PDF] relation entre couleur et structure chimique des pigments et colorants organiques

[PDF] fiche révision brevet physique chimie

[PDF] les molécules d'adhésion cellulaire

[PDF] fiche de révision brevet histoire nathan

[PDF] fiche sur les suites 1ere s

[PDF] comprendre le raisonnement par recurrence