[PDF] Séries Pour montrer que la sé





Previous PDF Next PDF



Chapitre 1 Suites réelles et complexes

Pour que cette notation ait un sens il faut montrer qu'une suite convergente admet une unique limite ! Proposition 1.2.2. Si une suite converge



Suites convergentes et suites de Cauchy dans R

27 sept. 2020 Intuitivement une suite numérique est la donnée pour tout n ? N d'un ... qu'une suite (un)n?N converge vers le réel L (ou tend vers le ...



TD 3 Espaces complets

Soit (xn)n?N ? XN une suite convergente montrons qu'elle est de Cauchy. Ce qui montre bien que la suite vérifie (1) : elle est bien de Cauchy.



1 Suites de Cauchy

Montrer que (rn)n?0 est une suite de Cauchy dans Q qui ne converge pas dans Q. Conclusion ? Exercice 1.2 (Irrationalité de e) Soit (rn)n?N la suite 



1 Suites de Cauchy

Montrer que (rn)n?0 est une suite de Cauchy dans Q qui ne converge pas dans Q. Conclusion ? Exercice 1.2 (Irrationalité de e) Soit (rn)n?N la suite 



Suites 1 Convergence

Montrer que toute suite convergente est bornée. Indication ?. Correction ?. Vidéo ?. [000506]. Exercice 2. Montrer qu'une suite d'entiers qui converge 



Séries

Pour montrer que la série diverge nous allons utiliser le critère de Cauchy. Rappel. Une suite (sn) de nombres réels (ou complexes) converge si et seulement 



Espaces Vectoriels Normés et Topologie

2.2.1 Suites de Cauchy dans un E.V.N. . permet de montrer que la boule unité B1 est le petit carré retourné (formé de quatre segments).



Suites de Cauchy et théorème du point fixe de Banach

Théorème (4): Toute suite de Cauchy dans un espace vectoriel normé qui admet une sous- suite convergente est elle-même convergente. On montre alors d'abord qu' 



Suites

b) En déduire que la suite est convergente on notera sa limite. c) supposons que < 1. i) Montrer qu'alors lim. ?+ 



1 Suites de Cauchy

1 Suites de Cauchy Exercice 1 1 (Une suite de Cauchy dans Q non convergente) (a) Soient (r n) n2N une suite de nombres r eels telle que jr n+1 r nj n pour tout n2N ou est un r eel strictement compris entre 0 et 1 Montrer que la suite (r n) n2N est de Cauchy Indication : on pourra ecrire pour m>n r m r n = P m 1 k=n (r k+1 r k) (b) Soient



MAT311 Cours 3 : Espaces metriques complets´ 114 Suites de Cauchy

Suites de Cauchy 1 1 1 Notion de suite de Cauchy L’inter´ et des suites de Cauchy est que dans des espaces mˆ etriques´ convenables (les espaces complets – voir plus loin) on peut veri?er´ la convergence de certaines suites sans avoir a conna` ˆ?tre a priori la limite



Feuille d’exercices n 1 Suites - u-bordeauxfr

Exercice 8 (suites de Cauchy) 1 Montrer que la suite u n= ( 1)n n n+1 n’est pas une suite de Cauchy 2 Montrer que la suite u n= 2+( n1) n est de Cauchy 3 Soit (u n) n montrer que la suite d e nie par u n= P 1 k n 1 k n’est pas une suite de Cauchy Vers quoi tends u nquand n!+1? 4 Montrer qu’une suite (u n) n v eri ant 8n ju n+1 u



Suites convergentes et suites de Cauchy dans R

Intuitivement une suite numérique est la donnée pour tout n2N d’un réel noté u n: Dé?nition 1 1 Une suite est une application de N vers R : u: N !R n7!u(n) souvent noté u n: La suite sera notée uou bien (u n) n2N:u ns’appelle le terme général de la suite On dit qu’une suite (u n) n2N converge vers le réel L(ou tend vers le

  • Exemple Fondamental d’ensemble Complet

    Pour démontrer la complétude de Rmathbb{R} R, on va d’abord obtenir le résultat classique suivant : Propriété :Une suite de Cauchy converge si et seulement si elle admet une valeur d’adhérence. Preuve : Le sens direct est immédiat. Pour la réciproque, on se donne (un)n?N(u_n)_{n in mathbb{N}} (un?)n?N? à valeurs dans EE E telle que : ??,lim?n??u...

Qu'est-ce que la suite de Cauchy ?

L’inter´ et des suites de Cauchy est que dans des espaces mˆ etriques´ convenables (les espaces complets – voir plus loin), on peut veri?er´ la convergence de certaines suites sans avoir a conna` ˆ?tre a priori la limite. On cherchera donc a exhiber le plus possible d’espaces com-` plets. De?nition 1.1.´Une suite(x n)

Quelle est la différence entre une suite de Cauchy et une suite qui converge ?

1si, et seulement si, elle est de Cauchy pour la distanced 2. 2. On veri?e aussi que l’image d’une suite de Cauchy par une´ application uniformement continue, est de Cauchy.´ 1.1.2 Les suites convergentes sont de Cauchy Proposition 1.1. Une suite qui converge est une suite de Cauchy.

Quelle est la différence entre une suite numérique et une suite convergente?

Suites convergentes et suites de Cauchy dans R Suites convergentes et suites de Cauchy dans R Chapitre II 27 septembre 2020 1 Suites Intuitivement, une suite numérique est la donnée pour tout n2N d’un réel, noté u n: Dé?nition 1.1. Une suite est une application de N vers R : u: N !R n7!u(n) souvent noté u n: La suite sera notée uou bien (u n) n2N:u

Comment appelle-t-on une suite?

Une suite est une application de N vers R : u: N !R n7!u(n) souvent noté u n: La suite sera notée uou bien (u n) n2N:u ns’appelle le terme général de la suite.

SériesDans ce chapitre nous allons nous intéresser à des sommes ayant une infinité de termes. Par exemple que peut bien

valoir la somme infinie suivante : 1+12 +14 +18 +116
+=?2 11 21
4

Cette question a été popularisée sous le nom duparadoxe de Zénon. On tire une flèche à2mètres d"une cible. Elle

met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du

temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance

encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n"atteint jamais

sa cible! Zénon ne concevait pas qu"une infinité de distances finies puisse être parcourue en un temps fini. Et pourtant

nous allons voir dans ce chapitre que la somme d"une infinité de termes peut être une valeur finie.

1. Définitions - Série géométrique

1.1. DéfinitionsDéfinition 1.

Soit(uk)k>0une suite de nombres réels (ou de nombres complexes). On pose S n=u0+u1+u2++un=n X k=0u k. La suite(Sn)n>0s"appelle lasériede terme généraluk.

Cette série est notée par la somme infinieX

k>0u k. La suite(Sn)s"appelle aussi lasuite des sommes partielles.Exemple 1.

Fixonsq2C. Définissons la suite(uk)k>0paruk=qk; c"est une suite géométrique. Lasérie géométriqueX

k>0q kest la suite des sommes partielles : S

0=1S1=1+q S2=1+q+q2...Sn=1+q+q2++qn...Définition 2.

SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE2Si la suite(Sn)n>0admet une limite finie dansR(ou dansC), on note

S=+1X k=0u k=limn!+1Sn.On appelle alorsS=P+1 k=0uklasommede la sérieP k>0uk, et on dit que la série estconvergente. Sinon, on dit

qu"elle estdivergente.Notations.On peut noter une série de différentes façons, et bien sûr avec différents symboles pour l"indice :

+1X i=0u iX n2Nu nP k>0ukX u k. Pour notre part, on fera la distinction entre une série quelconque X k>0u k , et on réservera la notation +1X k=0u k

à une série

convergente ou à sa somme.

1.2. Série géométriqueProposition 1.

Soit q2C. La série géométriqueP

k>0qkest convergente si et seulement sijqj<1. On a alors+1X k=0q S n=1+q+q2+q3++qn. Écartons tout de suite le casq=1, pour lequelSn=n+1. Dans ce casSn!+1, et la série diverge.

Soitq6=1 et multiplionsSnpar 1q:

(1q)Sn= (1+q+q2+q3++qn)(q+q2+q3++qn+1) =1qn+1 DoncS n=1qn+11qSijqj<1, alorsqn!0, doncqn+1!0 et ainsiSn!11q. Dans ce cas la sérieP k>0qkconverge.

Sijqj>1, alors la suite(qn)n"a pas de limite finie (elle peut tendre vers+1, par exemple siq=2; ou bien être

divergente, par exemple siq=1). Donc sijqj>1,(Sn)n"a pas de limite finie, donc la sérieP k>0qkdiverge.Exemple 2.1.

Série géométrique de raisonq=12:

+1X k=012 k =1112=2. Cela résout le paradoxe de Zénon : la flèche arrive bien jusqu"au mur! 2. Série géométrique de raisonq=13, avec premier terme13

3. On se ramène à la série géométrique commençant à

k=0en ajoutant et retranchant les premiers termes : +1X k=313 k +1X k=013 k 113
13

2=1113

139=32

139=118.

3.Le fait de calculer la somme d"une série à partir dek=0est purement conventionnel. On peut toujours effectuer

un changement d"indice pour se ramener à une somme à partir de0. Une autre façon pour calculer la même série

+1X k=313 kque précédemment est de faire le changement d"indicen=k3 (et donck=n+3) : +1X k=313 k=+1X n=013 n+3=+1X n=013 313
n=13 3+1X n=013 n=127 1113
=118 4. +1X 2k =+1X 14 k =1114 =45 SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE3

1.3. Séries convergentesLa convergence d"une série ne dépend pas de ses premiers termes : changer un nombre fini de termes d"une série

ne change pas sa nature, convergente ou divergente. Par contre, si elle est convergente, sa somme est évidemment

modifiée.

Une façon pratique d"étudier la convergence d"une série est d"étudier son reste : lereste d"ordrend"une série

convergenteP+1 k=0ukest : R n=un+1+un+2+=+1X k=n+1u kProposition 2. Si une série est convergente, alors S=Sn+Rn(pour tout n>0) etlimn!+1Rn=0.Démonstration. •S=P+1 k=0uk=Pn k=0uk+P+1 k=n+1uk=Sn+Rn. DoncRn=SSn!SS=0 lorsquen!+1.1.4. Suites et séries

Il n"y a pas de différence entre l"étude des suites et des séries. On passe de l"une à l"autre très facilement.

Tout d"abord rappelons qu"à une sérieP

k>0uk, on associe la somme partielleSn=Pn k=0uket que par définition la série est convergente si la suite(Sn)n>0converge.

Réciproquement si on veut étudier une suite(ak)k>0on peut utiliser le résultat suivant :Proposition 3.

Unesomme télescopiqueest une série de la formeX k>0(ak+1ak). Cette série est convergente si et seulement si`:=limk!+1akexiste et dans ce cas on a : +1X k=0(ak+1ak) =`a0.Démonstration. S n=n X k=0(ak+1ak) = (a1a0)+(a2a1)+(a3a2)++(an+1an) =a0+a1a1+a2a2++anan+an+1 =an+1a0Voici un exemple très important pour la suite.

Exemple 3.

La série

+1X k=01(k+1)(k+2)=112+123+134+

est convergente et a la valeur1. En effet, elle peut être écrite comme somme télescopique, et plus précisément la

somme partielle vérifie : S n=n X k=01(k+1)(k+2)=n X

1k+11k+2‹

=11n+2!1 lorsquen!+1 Par changement d"indice, on a aussi que les sériesP+1 k=11k(k+1)etP+1 k=21k(k1)sont convergentes et de même somme1. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE4

1.5. Le terme d"une série convergente tend vers0Théorème 1.

Si la sérieP

k>0ukconverge, alors la suite des termes généraux(uk)k>0tend vers0.Le point clé est que l"on retrouve le terme général à partir des sommes partielles par la formule

u n=SnSn1.

Démonstration.Pour toutn>0, posonsSn=Pn

k=0uk. Pour toutn>1,un=SnSn1. SiP k>0ukconverge, la suite

(Sn)n>0converge vers la sommeSde la série. Il en est de même de la suite(Sn1)n>1. Par linéarité de la limite, la

suite(un)tend versSS=0.La contraposée de ce résultat est souvent utilisée : Une série dont le terme général ne tend pas vers 0 ne peut pas converger.

Par exemple les séries

P k>1(1+1k )etP k>1k2sont divergentes. Plus intéressant, la sériePukde terme général u k=1 sik=2`pour un certain`>0

0 sinon

diverge. En effet, même si les termes valant 1 sont très rares, il y en a quand même une infinité!

1.6. LinéaritéProposition 4.

SoientP+1

k=0aketP+1 k=0bkdeux séries convergentes de sommes respectivesAetB, et soient,2R(ouC). Alors la sérieP+1 k=0(ak+bk)est convergente et de sommeA+B. On a donc +1X k=0(ak+bk) =+1X k=0a k++1X k=0bquotesdbs_dbs35.pdfusesText_40
[PDF] suite de cauchy exercices

[PDF] rapport jury capes interne anglais 2014

[PDF] rapport jury capes interne anglais 2016

[PDF] rapport capes espagnol 2016

[PDF] rapport de jury caplp lettres histoire 2016

[PDF] rapport du jury caplp 2015

[PDF] sujet caplp 2013

[PDF] methodologie caplp lettres histoire

[PDF] vecteurs orthogonaux formule

[PDF] vecteurs orthogonaux produit scalaire

[PDF] montrer que deux vecteurs sont orthogonaux dans l'espace

[PDF] économie et démographie economie approfondie

[PDF] deux vecteurs orthogonaux produit scalaire

[PDF] arg(zd-zc/zb-za)

[PDF] vecteur complexe