[PDF] Nombres complexes Nombre de module 3 et





Previous PDF Next PDF



I Module et Argument dun nombre complexe

Calculer (1 + i?3)5 ;. 2. Déterminer une forme trigonométrique de ?. ?3 + i. ?1 ? i . 3. Déterminer 



Nombres complexes

Calcul : pour z = a + jb on a.



Columelle 3 3

https://www.jstor.org/stable/43605877



Fiche pour le calcul darguments en SLCI

06-Nov-2016 Réponse harmonique des systèmes du 1° et 2° ordre. Denis DEFAUCHY. 06/11/2016. Fiche argument. Page 2 sur 7. A.I.2 Calcul de l'argument.



Les frères Huygens et le calcul des aages: Largument du pari

ET LE <CALCUL DES AAGES>>. L'argument du pari 6quitable. Jean-Marc ROHRBASSER* Jacques VERON*. II serait sarement abusif de compter des savants comme.



Calcul avec les nombres complexes/Module et argument

Calculer la distance où et sont les affixes des deux points. La distance AB est donc. 2)] Argument d'un nombre complexe non nul. Définition.



NOMBRES COMPLEXES (Partie 2)

I. Module et argument d'un nombre complexe Méthode : Calculer le module d'un nombre complexe ... 0 n'a pas d'argument car dans ce cas l'angle u.



Nombres complexes

Nombre de module 3 et d'argument -?/8. Indication ?. Correction ?. Vidéo ?. [000003]. Exercice 3. Calculer le module et l'argument de u =.



Forme trigonométrique dun nombre complexe – Applications

Module et argument de l'opposé et du conjugué . Remarques : Il découle facilement des règle de calcul sur les coordonnées de vecteurs que :.



Nombres complexes 1 Forme cartésienne forme polaire

Exercice 3 Effectuer les calculs suivants : 1. (3 + 2i)(1 ? 3i). 2. Produit du nombre complexe de module 2 et d'argument ?/3 par le 



1 Modulus and argument - Loughborough University

The argument of zis argz= = arctan y x :-Re 6 Im y uz= x+iy x 3 r Note: When calculating you must take account of the quadrant in which zlies - if in doubt draw an Argand diagram The principle value of the argument is denoted by Argz and is the unique value of argzsuch that ?



Exercices : Argument d’un nombre complexe Savoir d eterminer

Savoir utiliser les propri et es des arguments 1) D eterminer un argument de z 1 = 1 + iet z 2 = 3 + p 3i 2) En d eduire un argument des nombres suivants : z 1 z 2 3 p 3i 1 2 (1 + i) 1 i (3 p 3i)2 (1 i)3 Pi eges a eviter sur les arguments 1) D eterminer le module et un argument des nombres complexes suivants : z 1 = 2(cos ? 4 + isin ? 4) z 2



Searches related to calculer un argument PDF

ment Le cas échéant ces propositions acquièrent ensuite un statut de savoir aux yeux des élèves Nous avons également pu préciser certaines caractéristiques favorables pour ces situations notamment : l’existence d’un enjeu explicite de preuve la dévolution d’un travail de preuve le

Comment formuler un argument ?

La formulation de l’argument doit montrer au correcteur que le sujet est toujours au cœur de votre réflexion : il faut donc ne pas cesser, tout au long de la copie, d’en reprendre les termes, comme si chaque nouvel argument permettait de creuser davantage le sujet et le sens des mots-clés de la problématique.

Comment déterminer le module et un argument d'un nombre complexe ?

Méthode : Calculer le module et un argument d'un nombre complexe Afin de calculer le module ?z? et un argument ? d'un nombre complexe z, on détermine sa forme algébrique z = a +ib. On applique ensuite les formules du cours.

Comment calculer l’argument d’un complexe?

où X 0 est le module du complexe x ( t ) et ( ? t + ? ) est l’argument du complexe x ( t ) . La solution générale de (1) : x ( t ) = X 0 ( cos? t + ? ) est la partie réelle du complexe ( ) x ( t ) = X 0 e j ? t +? .

Comment rédiger des arguments?

Varier les arguments en s’appuyant sur différents domaines de réflexion, chercher des exemples pertinents. 2 – Faire une concession : à partir des commentaires sur un blog en réaction à un sujet, classer les arguments en deux groupes selon les points de vue défendus.

Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2 >0 alors 2cosq2 est le module dezet 3q=2 est son argument ; par contre si cosq2 <0 le module est 2jcosq2 jet l"argument

3q=2+p(le+pcompense le changement de signe careip=1).Correction del"exer cice5 NRacines carrées.Soitz=a+ibun nombre complexe aveca;b2R; nous cherchons les complexesw2Ctels

quew2=z. Écrivonsw=a+ib. Nous raisonnons par équivalence : w

2=z,(a+ib)2=a+ib

,a2b2+2iab=a+ib Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires : a2b2=a 2ab=b Sans changer l"équivalence nous rajoutons la conditionjwj2=jzj. 8 :a

2+b2=pa

2+b2 a 2b2=a 2ab=b Par somme et différence des deux premières lignes : 8 :a

2=a+pa

2+b22 b

2=a+pa

2+b22 2ab=b ,8 >:a=qa+pa 2+b22 b=qa+pa 2+b22 abest du même signe queb Cela donne deux couples(a;b)de solutions et donc deux racines carrées (opposées)w=a+ibdez. 7 En pratique on répète facilement ce raisonnement, par exemple pourz=86i, w

2=z,(a+ib)2=86i

,a2b2+2iab=86i a2b2=8 2ab=6 ,8 :a

2+b2=p8

2+(6)2=10 le module dez

a 2b2=8 2ab=6 ,8 :2a2=18 b 2=1 2ab=6 ,8 :a=p9=3 b=1 aetbde signes opposés ,8 :a=3 etb=1quotesdbs_dbs35.pdfusesText_40
[PDF] nombres complexes montrer que deux droites sont parallèles

[PDF] argument de 1 i

[PDF] complexe droite perpendiculaire

[PDF] compensation de masse définition

[PDF] cercle trigo

[PDF] l'art et la réalité dissertation

[PDF] l'art nous détourne t il de la réalité intro

[PDF] l'art nous éloigne t il de la réalité plan

[PDF] figure acrosport

[PDF] l art modifie t il notre rapport ? la réalité plan

[PDF] démontrer que 3 points appartiennent ? un même cercle

[PDF] influence de la philosophie sur la psychologie

[PDF] histoire de la psychologie de l'antiquité ? nos jours

[PDF] l'objet de la psychologie

[PDF] pv d'expertise automobile