[PDF] VECTEURS ET REPÉRAGE Un repère est dit





Previous PDF Next PDF



PRODUIT SCALAIRE DANS LESPACE

Dans un repère orthonormé le plan P a pour équation . Soit et . 1) Démontrer que la droite (AB) et le plan P sont sécants. 2 



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre. - Admis -. Méthode : Démontrer que 



PRODUIT SCALAIRE DANS LESPACE

II. Produit scalaire dans un repère orthonormé. 1) Base et repère orthonormé Deux droites perpendiculaires sont coplanaires et sécantes.



Calcul vectoriel – Produit scalaire

1 Montrer que deux droites sont perpendiculaires. ABCD est un carré de côté Dans le plan muni d'un repère orthonormé (O I



VECTEURS DROITES ET PLANS DE LESPACE

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même Définition : Un repère l ; ? ?



VECTEURS ET REPÉRAGE

Un repère est dit orthonormé s'il est orthogonal et si ?et ? sont de norme 1. 3 unités vers la droite et 2 unités vers le haut.



1. Norme dun vecteur 2. Colinéarité de deux vecteurs 3. Vecteur

Le plan est muni d'un repère orthonormé (O?i



COMMENT DEMONTRER……………………

Pour démontrer qu'un point est le milieu d'un segment. On sait que I appartient au segment [AB] et Pour démontrer que deux droites sont perpendiculaires.



produit scalaire Terminale generale

Deux droites sont coplanaires si et seulement si elles sont sécantes ou Dans un repère orthonormé la norme du vecteur ... Ce qui prouve que :.



le produit scalaire 1

Peut-on par le calcul montrer que deux droites sont perpendiculaires ? Ils se sont tous placés spontanément dans un repère orthonormal.

Quelle est la différence entre les droites perpendiculaires et parallèles ?

Dans le plan, les notions de droites perpendiculaires et parallèles sont liées par les propriétés suivantes : Si deux droites sont perpendiculaires, toute droite parallèle à l'une est perpendiculaire à l'autre. Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre.

Comment savoir si une droite est perpendiculaire ?

Deux droites de l'espace sont perpendiculaires si et seulement si elles se coupent en formant un angle droit. Dans l'espace, des droites, non parallèles, peuvent ne pas se couper. Si une des droites est parallèle à une droite perpendiculaire à l'autre alors les deux droites sont dites orthogonales.

Quelle est la différence entre perpendiculaire et orthogonale?

Si deux droites sont perpendiculaires, toute droite parallèle à l'une est seulement orthogonale à l'autre. Elle ne sera perpendiculaire à l'autre que si elle la coupe. Si deux droites sont parallèles, toute droite perpendiculaire à l'une est seulement orthogonale à l'autre.

Comment savoir si une droite est orthogonale ?

On rappelle que deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux, c'est-à-dire si le produit scalaire de ces deux vecteurs est nul.

1 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VECTEURS ET REPÉRAGE

Tout le cours en vidéo : https://youtu.be/9OB3hct6gak

Partie 1 : Repère du plan

Trois points du plan non alignés O, I et J forment un repère, que l'on peut noter (O, I, J). L'origine O et les unités OI et OJ permettent de graduer les axes (OI) et (OJ).

Si on pose í µâƒ— = í µí µ

et í µâƒ— = í µí µ , alors ce repère se note également (O, í µâƒ— ,

Définitions :

- On appelle repère du plan tout triplet (O, í µâƒ—, í µâƒ—) où O est un point et í µâƒ— et í µâƒ— sont deux vecteurs non

colinéaires.

- Un repère est dit orthogonal si í µâƒ— et í µâƒ— ont des directions perpendiculaires.

- Un repère est dit orthonormé s'il est orthogonal et si í µâƒ— et í µâƒ— sont de norme 1.

TP info : Lectures de coordonnées :

Partie 2 : Coordonnées d'un vecteur

Exemple :

Vidéo https://youtu.be/8PyiMHtp1fE

Pour aller de A vers B, on parcourt un chemin :

3 unités vers la droite et 2 unités vers le haut.

Ainsi í µí µ

=3í µâƒ—+2í µâƒ—.

Les coordonnées de í µí µ

se notent . 3 2 / ou (3;2). On préfèrera la première notation.

í µâƒ— O í µâƒ— Repère orthogonal í µâƒ— O í µâƒ— Repère orthonormé í µâƒ— O í µâƒ— Repère quelconque í µâƒ— í µâƒ— I J O

2 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Déterminer les coordonnées d'un vecteur par lecture graphique

Vidéo https://youtu.be/8PyiMHtp1fE

a) Dans le repère (O, í µâƒ—, í µâƒ—), placer les points í µ. -1 -2 -2 3 1 -4 4 -2 b) Déterminer les coordonnées des vecteurs í µí µ et í µí µ par lecture graphique.

Correction

On a :

=-í µâƒ—+5í µâƒ— donc í µí µ a pour coordonnées . -1 5 =3í µâƒ—+2í µâƒ— donc í µí µ a pour coordonnées . 3 2

Propriété :

Soit deux points í µ.

/ et í µ.

Le vecteur í µí µ

a pour coordonnées . Méthode : Déterminer les coordonnées d'un vecteur par calcul

Vidéo https://youtu.be/wnNzmod2tMM

Calculer les coordonnées des vecteurs í µí µ et í µí µ , tels que : 2 1 5 3 -1 -2 -2 3 1 -4 / et í µ. 4 -2

Correction

5-2 3-1 3 2 -2- -1 3- -2 A = . -1 5 4-1 -2- -4 A = . 3 2

3 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriétés :

Soit deux vecteurs 𝐼⃗.

/ et í µâƒ—í±¦

A, et un réel í µ.

On a :

A í µí µí°¼âƒ— í±¦

A -𝐼⃗.

𝐼⃗ et í µâƒ— sont égaux lorsque í µ=í µâ€² et í µ=í µâ€². Méthode : Appliquer les formules sur les coordonnées de vecteurs

Vidéo https://youtu.be/rC3xJNCuzkw

En prenant les données de la méthode précédente, calculer les coordonnées des vecteurs 3í µí µ

4í µí µ

et 3í µí µ -4í µí µ

Correction

On a : í µí µ

3 2 / et í µí µ -1 5

3í µí µ

3×3

3×2

9 6 /, 4í µí µ 4× -1

4×5

-4 20

3í µí µ

-4í µí µ 9- -4 6-20 13 -14 Méthode : Calculer les coordonnées d'un point défini par une égalité vectorielle

Vidéo https://youtu.be/eQsMZTcniuY

Soit les points í µ.

1 2 -4 3 1 -2

Déterminer les coordonnées du point í µ tel que í µí µí µí µ soit un parallélogramme.

Correction

í µí µí µí µ est un parallélogramme si et seulement si í µí µ

On pose .

/ les coordonnées du point í µ.

On a alors : í µí µ

-4-1 3-2 -5 1 / et í µí µ

1-í µ

-2-í µ A

Donc : 1-í µ

=-5 et -2-í µ =1 =-5-1 et -í µ =1+2 =6 et í µ =-3.

Les coordonnées du point í µ sont donc .

6 -3

4 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Colinéarité de deux vecteurs

1. Critère de colinéarité

Propriété : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que : í µí µ'-í µí µ'=0.

Remarque : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que les coordonnées des deux

vecteurs sont proportionnelles soit : í µí µ'=í µí µ'.

Démonstration au programme :

Vidéo https://youtu.be/VKMrzaiPtw4

• Si l'un des vecteurs est nul alors l'équivalence est évidente. • Supposons maintenant que les vecteurs 𝐼⃗ et í µâƒ— soient non nuls.

Dire que les vecteurs 𝐼⃗.

/ et í µâƒ—í±¦ A sont colinéaires équivaut à dire qu'il existe un nombre réel í µ tel que 𝐼⃗ =í µí µâƒ—.

Les coordonnées des vecteurs 𝐼⃗ et í µâƒ— sont donc proportionnelles et le tableau ci-dessous est un

tableau de proportionnalité : Donc : í µí µ'=í µí µ' soit encore í µí µ'-í µí µ'=0. Réciproquement, si í µí µ'-í µí µ'=0. Le vecteur í µâƒ— étant non nul, l'une de ses coordonnées est non nulle. Supposons que í µ'≠0. Posons alors í µ= . L'égalité í µí µ'-í µí µ'=0 s'écrit : í µí µ'=í µí µ'.

Soit : í µ =

Comme on a déjà í µ = í µí µâ€², on en déduit que 𝐼⃗ =í µí µâƒ—.

Méthode : Vérifier si deux vecteurs sont colinéaires

Vidéo https://youtu.be/eX-_639Pfw8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. 4 -7 / et í µâƒ—. -12 21
/ b) 𝐼⃗. 5 -2 / et í µâƒ—. 15 -7

Correction

a) í µí µ'-í µí µ'=4×21- -7 -12 =84-84=0.

Le critère de colinéarité est vérifié donc les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires.

On peut également observer directement que í µâƒ—=-3𝐼⃗.

5 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr b) í µí µ'-í µí µ'=5× -7 -2 15 =-35+30=-5≠0.

Le critère de colinéarité n'est pas vérifié donc les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

2. Déterminant de deux vecteurs

Définition : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Le nombre í µí µ'-í µí µ' est appelé déterminant des vecteurs 𝐼⃗ et í µâƒ—.

On note : í µí µí µ

Propriété : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que í µí µí µ

=0. Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant

Vidéo https://youtu.be/MeHOuwy81-8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. -6 10 / et í µâƒ—. 9 -15 / b) 𝐼⃗. 4 9 / et í µâƒ—. 11 23

Correction

a) í µí µí µ =R -69 10-15 R= -6 -15 -10×9=90-90=0 Les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires. b) í µí µí µ =R 411
923

R=4×23-9×11=92-99=-7≠0

Les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

3. Applications

Propriétés :

1) Dire que les droites (í µí µ) et (í µí µ) sont parallèles revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

2) Dire que les points í µ, í µ et í µ sont alignés revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

Méthode : Appliquer la colinéarité

Vidéo https://youtu.be/hp8v6YAQQRI

Vidéo https://youtu.be/dZ81uKVDGpE

6 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

On considère les points í µ.

-1 1 3 2 -2 -3 6 -1 / et í µ. 5 0 a) Démontrer que les droites (í µí µ) et (í µí µ) sont parallèles. b) Démontrer que les points í µ, í µ et í µ sont alignés.

Correction

a) í µí µ 3- -1 2-1 4 1 / et í µí µ 6- -2 -1- -3 A = . 8 2 í µí µí µSí µí µ T=R 48
12

R=4×2-8×1=8-8=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les droites (í µí µ) et (í µí µ) sont parallèles.

Remarque :

On aurait pu également remarquer que les coordonnées de í µí µ et í µí µ sont proportionnelles pour en déduire que les vecteurs í µí µ et í µí µ sont colinéaires. b) í µí µ 3-5 2-0 -2 2 / et í µí µ 6-5 -1-0 1 -1 í µí µí µSí µí µ T=R -21 2-1

R=-2×

-1 -2×1=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les points í µ, í µ et í µ sont alignés.

Partie 4 : Coordonnées du milieu d'un segment

Propriété : Soit deux points í µ.

/ et í µ. Le milieu í µdu segment [í µí µ] a pour coordonnées : X Y

Démonstration :

Considérons le parallélogramme construit à partir de í µ, í µ et í µ.

Soit í µ son centre.

Alors í µí µ

(ou í µ) a donc les mêmes coordonnées que celles du vecteur ) soit : Z [=X Y.

B O M A

7 sur 7

quotesdbs_dbs35.pdfusesText_40
[PDF] sujet agregation espagnol 2016

[PDF] rapport jury agrégation interne espagnol 2017

[PDF] figure hybride définition

[PDF] rapport jury agrégation interne espagnol 2011

[PDF] l'attachement définition

[PDF] caregiving définition

[PDF] rapport jury capes interne anglais 2015

[PDF] définition attachement bowlby

[PDF] rapport de jury capes interne anglais 2016

[PDF] représentation paramétrique d'une droite intersection de deux plans

[PDF] 4 types d'attachement

[PDF] bowlby attachement et perte pdf

[PDF] ainsworth attachement

[PDF] rapport jury capes interne anglais 2017

[PDF] equation parametrique exercice