[PDF] Problèmes de bac - Logarithme népérien EXERCICE no 1 (France





Previous PDF Next PDF



Sujets de bac : Ln

Sujets de bac : Ln. Sujet n°1 : extrait de Liban – juin 2004. Partie A. Soit la fonction définie sur 0; ? par. 2 ln . 1) Etudier les variations de sur 0; 



Problèmes de bac - Logarithme népérien EXERCICE no 1 (France

Tale STI. Problèmes de bac - Logarithme népérien. Fiche n?9. EXERCICE no 1 (France septembre 2006) . Partie A : étude d'une fonction auxiliaire.



Sujet et corrigé mathématiques bac s spécialité

https://www.freemaths.fr/corriges-par-theme/bac-s-mathematiques-amerique-du-nord-2018-specialite-corrige-exercice-2-fonctions-derivees-integrales.pdf



Sujet du bac Spécialité Mathématiques 2021 - Polynésie 1

Principaux domaines abordés : Fonction logarithme népérien dérivation. Cet exercice est composé de deux parties. Certains résultats de la première partie 



Exercices sur le logarithme népérien Terminale Pro

c) Sur quel intervalle le transport routier est-il le plus avantageux ? (D'après sujet de Bac Pro Exploitation des Transports – Logistique Session 2004). Page 



Exercices.

La fonction logarithme népérien. Exercice I e3 ln 2. 2) f(x) = eln(x?1)+ln x. ; g(x) = lne. 1 x + e? ln x. Exercice II ... Exercice BAC 1.



BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE

Processus de résolution d'équations du type ln(x) = a. Faire apparaître sur la copie du candidat la note par exercice. 4 – À LA FIN DE L'ÉPREUVE.



Corrigé du baccalauréat Métropole 8 juin 2021 Candidats libres

7 juin 2021 n (car ln 001 < 0). Or ln001 ln0



Exercices supplémentaires : ln

Exercice 5. On considère la fonction définie sur 0; ? par 2 ln ln. 1) Etudier les limites de en ? et en 0. Déterminer les asymptotes éventuelles de .



Correction des exercices sur la fonction ln (feuille 2)

Correction des exercices sur la fonction ln (feuille 2). Exercice I Sujet bac 1 (2021). On considère la fonction f définie sur l'intervalle ]0 ; +?[ par 



[PDF] FONCTION LOGARITHME NEPERIEN EXERCICES CORRIGES

Page 1/29 FONCTION LOGARITHME NEPERIEN EXERCICES CORRIGES Exercice n°1 1) Exprimer en fonction de ln 2 les nombres suivants :



[PDF] Problèmes de bac - Logarithme népérien EXERCICE no 1 (France

Tale STI Problèmes de bac - Logarithme népérien Fiche n?9 EXERCICE no 1 (France septembre 2006) Partie A : étude d'une fonction auxiliaire



[PDF] Sujets de bac : Ln

Sujets de bac : Ln Sujet n°1 : extrait de Liban – juin 2004 Partie A Soit la fonction définie sur 0; ? par 2 ln 1) Etudier les variations de sur 0; 



Fonction logarithme népérien exercices et problèmes corrigés pdf

1 fév 2021 · Fonction logarithme népérien exercices et problèmes corrigés pdf Problème d'analyse 01 : Le but du problème est d'étudier certaines propri



[PDF] ( ) ( ) ( ) TD+CORRECTIONS-FONCTIONS LOGARITHMIQUES

Exercices d'applications et de réflexions avec correction : FONCTIONS LOGARITHMIQUES g x ln x Exercice 15 : Considérons la fonction définie



[PDF] Exercices supplémentaires : ln

Exercice 5 On considère la fonction définie sur 0; ? par 2 ln ln 1) Etudier les limites de en ? et en 0 Déterminer les asymptotes éventuelles de



Fonctions logarithmiques - Cours et Exercices Corrigés 2 Bac

Télécharger en linge des Fichiers PDF qui contient des Cours et exercices corrigés + des résumés Fonctions logarithmiques Et n'oubliez pas de partager 



Fonction logarithme népérien exercices type bac - Jaicompris

Corrigé en vidéo! Exercices 1: Position relative de 2 courbes - logarithme - D'après sujet de Bac On considère les fonctions 



[PDF] fonction-logarithme-exercicepdf - Jaicompris

Corrigés en vidéo avec le cours sur jaicompris com Savoir calculer avec des logarithmes Simplifier les expressions suivantes : a) ln 6 ? ln 2 b) ln e2



[PDF] Fonction logarithme népérien : exercices - page 1 ?e ) 5 ) - Pierre Lux

Quel est le niveau sonore des deux bruits réunis ? Que remarque-t-on ? EN ROUTE VERS LE BAC Ex 28 : Baccalauréat S – Amérique du nord 30 

:
TaleSTIProblèmes de bac - Logarithme népérienFiche n°9

EXERCICE no1 (France septembre 2006)

Partie A : étude d"une fonction auxiliaire

Soitgla fonction définie sur l"intervalle ] 0 ; +∞[ par g(x) = 2x

2-4lnx+ 4.

1. Déterminer la fonction dérivéeg

?de la fonctionget prouver que, pour tout nombre réelxstrictement positif :g ?(x) =4x 2-4 x.

2. Étudier le sens de variation de la fonctiongsur l"intervalle ] 0 ; +∞[ puis dresser son tableau de

variations (on ne demande pas le calcul des limites).

3. Déterminer le signe de la fonctiongsur l"intervalle ] 0 ; +∞[.

Partie B

Dans toute la suite du problème, on étudie la fonctionfdéfinie sur l"intervalle ] 0 ; +∞[ par

f(x) = 2x-3 + 4lnx x.

On noteCsa courbe représentative dans le plan muni d"un repère orthonormal (O;-→ı;-→?) d"unité graphique

1 cm.

1. (a) Déterminer la limite defen 0.

(b) Interpréter graphiquement le résultat précédent.

2. (a) Déterminer la limite defen +∞.

(b) Démontrer que la droiteDd"équationy= 2x-3 est asymptote à la courbeCen +∞. (c) Étudier la position de la courbeCpar rapport à la droiteD.

3. Déterminer la dérivéef

?de la fonctionfet prouver que, pour tout nombre réelxstrictement positif : f ?(x) =g(x)x2.

4. À l"aide des résultats de la partie A, indiquer le signe def

?(x) sur l"intervalle ] 0 ; +∞[, puis dresser le tableau de variations de la fonctionf.

5. (a) Montrer que l"équationf(x) = 0 admet une solution uniqueαdans l"intervalle [ 1 ; 2 ].

(b) Donner un encadrement d"amplitude 10 -4deα.

6. Pour quelle valeur dexla courbeCadmet-elle, au point d"abscissex, une tangente parallèle àD?

7. Construire avec soin la droiteDet la courbeC(on utilisera une feuille de papier millimétré).

Partie C

Dans cette partie, on souhaite calculer l"aireA, en cm

2, du domaineEsitué entre les droites d"équations

x= 1 etx= 5, la courbeCet la droiteD.

1. Hachurer le domaineEsur le graphique réalisé à la partie B.

2. Montrer queA=

?5 1

4lnxxdx.

3. (a) On pose, pour tout nombre réelxstrictement positif,H(x) = (lnx)

2.

Déterminer la dérivée de la fonctionH.

(b) Calculer la valeur exacte deA, puis en donner une valeur approchée au mm

2près.

http://nathalie.daval.free.fr TaleSTIProblèmes de bac - Logarithme népérienFiche n°9

EXERCICE no2 (Polynésie juin 2007)

Le plan est rapporté au repère orthonorinal (O;-→ı;-→?) (L"unité graphique est 2 cm).

Le but du problème est l"étude de la fonctionfdéfinie sur l"intervalle ] 0 ; +∞[ par f(x) =x-1 +2 x-2ln(x)x puis de calculer une aire.

I. Étude d"une fonction auxiliaireg

On notegla fonction définie sur l"intervalle ] 0 ; +∞[ par : g(x) =x

2-4 + 2ln(x).

1. Calculer la fonction dérivéeg

?de la fonctiong.

2. Déterminer le sens de variation de la fonctiong. (On ne demande pas les limites en 0 et en +∞).

3. Résolution de l"équationg(x) = 0.

(a) Démontrer que sur l"intervalle [ 1 ; 2 ] l"équationg(x) = 0 possède une solution uniqueα.

(b) Donner un encadrement d"amplitude 10 -2de ce nombreα.

4. Déduire de ce qui précède le signe deg(x) suivant les valeurs dex, dans l"intervalle ] 0 ; +∞[.

II. Étude de la fonctionf

SoitCla courbe représentative defdans le repère (O;-→ı;-→?).

1. Déterminer la limite defen 0. Qu"en déduit-on pour la courbeC?

2. Etude en +∞.

(a) Déterminer la limite defen +∞. (b) Démontrer que la droiteDd"équationy=x-1 est asymptote à la courbeC. (c) Déterminer les coordonnées du point A commun à la courbeCet à la droiteD. (d) Étudier la position de la courbeCpar rapport à la droiteD.

3. Étude des variations def.

(a) Déterminer la fonction dérivéef ?de la fonctionf. Vérifier que pour tout réelxappartenant à l"intervalle ] 0 ; +∞[ :f ?(x) =g(x)x2, oùgest la fonction étudiée dans la partie I. (b) En utilisant les résultats de la partie I, dresser le tableau des variations de la fonctionf

4. On noteTla tangente à la courbeCau point d"abscisse e

2. Montrer queTest parallèle à l"asymptote

D.

5. Dans le repère (O;-→ı;-→?), tracer la droiteD, la tangenteTet la courbeCà l"aide de l"étude précédente.

(On prendraf(α)≈1,25.)

III. Calcul d"une aire

On définit sur l"intervalle ] 0 ; +∞[ la fonctionHpar

H(x) =x

2

2-x+ 2lnx-(lnx)

2

1. Démontrer queHest une primitive de la fonctionfsur l"intervalle ] 0 ; +∞[.

2. Soit la région du plan limitée par la courbeC, l"axe des abscisses et les droites d"équationsx= 1 et

x=e. (a) Hachurer la région sur votre figure.

(b) On noteSl"aire, exprimée en unité d"aire, de la régionS. Déterminer la valeur exacte deS.

(c) Donner la valeur décimale approchée de cette aire, arrondie au mm 2. http://nathalie.daval.free.fr TaleSTIProblèmes de bac - Logarithme népérienFiche n°9

EXERCICE no3 (France deptembre 2007)

Partie A. Étude d"une fonction auxiliaire

On considère la fonctiongdéfinie sur l"intervalle ] 0 ; +∞[ par : g(x) =x+ 1 + lnx

1. Étudier les variations degsur l"intervalle ] 0 ; +∞[.

2. Démontrer qu"il existe une solution uniqueαde l"équationg(x) = 0 dans l"intervalle [ 0,1 ; 0,5 ].

3. Déterminer un encadrement deαd"amplitude 10

-2.

4. Étudier le signe deg

?(x) sur l"intervalle ] 0 ; +∞[.

Partie B. Étude de la fonctionf

Soitfla fonction définie sur l"intervalle ] 0 ; +∞[ par f(x) =xlnx x+ 1+ 2

On appelleCla courbe représentative defdans un repère orthonormal (O;-→ı;-→?) d"unité graphique 2 cm.

1. On rappelle que lim

x→0xlnx= 0. Déterminer la limite defen 0.

2. Montrer que, pour tout nombre réel strictement positifx:f(x) =lnx

1 +1 x + 2.

En déduire la limite defen +∞.

3. Soitf

?la dérivée def. Montrer que, pour tour nombre réel strictement positifx, f?(x) =g(x)(x+ 1)2.

4. Étudier, en utilisant les résultats de la partie A, le signe def

?(x) selon les valeurs dex.

5. Dresser le tableau de variations defsur l"intervalle ]0 ; +∞[.

(On indiquera une valeur approchée def(α) en prenantα≈0,28.)

6. Déterminer une équation de la tangente T àCau point d"abscisse 1.

7. On a tracé ci-dessous la courbe représentativeC

?de la fonctionhdéfinie dans la partie C. Sur le graphique, tracer la tangente T ainsi que la courbeC.

Partie C. Aire comprise entre deux courbes

On considère dans cette partie la fonctionhdéfinie sur l"intervalle ] 0 ; +∞[ par : h(x) =-lnx x+ 1

1. On pose, pour tout nombre réel strictement positifx:u(x) =f(x)-h(x).

Montrer queu(x) = lnx+ 2.

2. Montrer que la fonctionUdéfinie sur l"intervalle ] 0 ; +∞[ par :U(x) =xlnx+xest une primitive

de la fonctionu.

3. (a) Étudier le signe deu(x) sur l"intervalle ] 0 ; +∞[.

(b) En déduire les positions relatives des courbesCetC ?sur l"intervalle ] 0 ; +∞[.

4. Hachurer le domaineDcompris entre les courbesC,C

?et les droites d"équationx= 1 etx= 2.

5. Déterminer alors l"aire exacte du domaineDen unités d"aire, puis en cm

2. Donner une valeur approchée

de cette aire au mm

2près.

http://nathalie.daval.free.fr TaleSTIProblèmes de bac - Logarithme népérienFiche n°9

EXERCICE no4 (Polynésie juin 2008)

Soitfla fonction définie sur l"intervalle ] 0 ; +∞[ par : f(x) = 2-1 x-lnx.

On noteCsa courbe représentative dans un repère orthogonal (O;-→ı;-→?); la courbeCest donnée en annexe.

Partie A - Étude de la fonctionf

1. Déterminer la limite de la fonctionfen +∞.

2. On rappelle le résultat suivant : lim

x→0xlnx= 0. (a) En remarquant quef(x) =2x-1-xlnx x, déterminer la limite def(x) lorsquextend vers 0. (b) En déduire l"existence d"une asymptote à la courbeCet en donner une équation.

3. (a) Calculerf

?(x) et montrer que pour tout nombre réelxappartenant à l"intervalle ] 0 ; +∞[ on a :f ?(x) =1-xx2.

(b) Déterminer le tableau des variations defsur l"intervalle ] 0 ; +∞[. Indiquer la valeur de

l"extremum.

4. (a) Démontrer que, sur l"intervalle [ 0,1 ; 10 ], la fonctionfs"annule pour deux valeurs exactement.

On notex

1etx2ces deux valeurs, avecx1< x2.

(b) Placerx

1etx2sur l"axe (O ;ı) représenté sur la feuille annexe, et donner les valeurs approchées

arrondies au centième de ces deux nombres.

Partie B - Étude d"une tangente

On désigne parTla tangente à la courbeCau point A d"abscisse 2.

1. Démontrer qu"une équation de la droiteTest :y= 3x+ 2-ln2.

2. On considère la fonctionhdéfinie sur ] 0 ; +∞[ parh(x) =f(x)-

-14x+ 2-ln2 (a) Calculerh ?(x) et vérifier que pour toutxde ] 0 ; +∞[, on a :h?(x) =(x-2) 2 4x2. (b) En déduire le sens de variation de la fonctionhsur l"intervalle ] 0 ; +∞[ . (c) Calculerh(2) et en déduire le signe de la fonctionhsur l"intervalle ] 0 ; +∞[.

3. À l"aide des questions précédentes, déterminer la position relative de la courbeCet de la tangenteT.

4. Tracer la droiteTsur la feuille annexe en tenant compte du résultat obtenu dans la question précédente.

Partie C Calcul d"une aire

1. On noteGla fonction définie sur l"intervalle ]0 ; +∞[ par :

G(x) =x-xlnx

CalculerG

?(x).

2. En déduire une primitiveFde la fonctionfsur l"intervalle ] 0 ; +∞[.

3. On considère la partie du plan comprise entre les droites d"équationx= 1 etx= 6 d"une part, entre

l"axe horizontal et la courbeCd"autre part. On noteAl"aire de cette partie de plan, exprimée en unités d"aire. (a) Hachurer cette partie de plan sur la feuille annexe. (b) Donner la valeur exacte de l"aireA, puis sa valeur arrondie au centième. http://nathalie.daval.free.fr TaleSTIProblèmes de bac - Logarithme népérienFiche n°9

Graphique de l"exercice n°2 :

-1012345 -1 0 1 2 3 4 O11

Graphique de l"exercice n°3 :

2 4 6 01 -1 -2 -3quotesdbs_dbs6.pdfusesText_11
[PDF] exercices bac loi exponentielle

[PDF] exercices bac maths

[PDF] exercices bac maths complexes

[PDF] exercices bac maths es

[PDF] exercices bac maths intégrales

[PDF] exercices bac maths s exponentielle

[PDF] exercices bac maths suites

[PDF] exercices bac matrices

[PDF] exercices bac mecanique

[PDF] exercices bac nombres complexes

[PDF] exercices bac ondes

[PDF] exercices bac ondes et particules

[PDF] exercices bac physique

[PDF] exercices bac pro

[PDF] exercices bac pro arcu