[PDF] Rappel : relation déquivalence • Nouveaux nombres : Q et Z /mZ. • C





Previous PDF Next PDF



Table des mati`eres

Par exemple sur N ou sur R la relation ? est une relation d'ordre. Nous introduirons aussi les relations dites d'équivalence



1. Relations binaires 2. Relations déquivalence 3. Relations dordre

2. Relations d'équivalence. Définition. Une relation binaire est une relation d'équivalence si et seulement si elle est réflexive symétrique et transitive.



Relations binaires. Relations déquivalence et dordre

20 août 2017 Définition 1 : Une relation binaire ? définie sur un ensemble E est au choix : • une propriété qui relie ou non deux éléments x et y de E.



RELATION BINAIRE

1. Vérifier que la relation est une relation d'équivalence. 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient .



CHAPITRE 3 : Relations déquivalence et ensemble quotient

7 mars 2018 1.0.1 Définition: une relation R:AxA est une relation d'équivalence sur A si R est reflexive symétrique et transitive.





Rappel : relation déquivalence • Nouveaux nombres : Q et Z /mZ. • C

C'est une relation d'équivalence sur U : MAT1500. 7 of 40. Page 8. Démonstration. Soient (n1d1)



Relations 1 Introduction aux relations déquivalence : classer les

Définir une relation d'équivalence c'est précisément définir un critère Il y a deux "classes d'équivalence" : la “classe des hommes" et la “classe des.



Relation déquivalence relation dordre

est une relation d'équivalence. Préciser pour x fixé dans R



Ensembles Relations déquivalence

https://livres-mathematiques.fr/onewebmedia/L1-MI-arith-ch1.pdf



Math 127: Equivalence Relations - CMU

Math 127: Equivalence Relations Mary Radcli e 1 Equivalence Relations Relations can take many forms in mathematics In these notes we focus especially on equivalence relations but there are many other types of relations (such as order relations) that exist De nition 1 Let X;Y be sets



An Infinite Descent into Pure Mathematics

relationship between equivalence relations and partitions Note that throughout this lecture we have already seen that an equivalence relation induces a partition but now we shall formally prove this phenomenon Theorem 1 If R is an equivalence relation on a set S then the equivalence classes of R partition S Proof



Lecture 3: Equivalence Relations - UC Santa Barbara

Equivalence relations are remarkably useful because they allow us to work with the concept of equivalence classes: De nition Take any set S with an equivalence relation R For any element x 2S we can de ne the equivalence class corresponding to x as the set fs 2S jsRxg Again you have worked with lots of equivalence classes before For mod 3



Equivalence Relations - Mathematical and Statistical Sciences

An Important Equivalence Relation Let S be the set of fractions: S ={p q: pq??q?0} Define a relation R on S by: a b R c d iff ad=bc This relation is an equivalence relation 1) For any fraction a/b a/b R a/b since ab = ba (Reflexitivity) 2) If a/b R c/d then ad = bc so cb = da and c/d R a/b (Symmetry)



Equivalence Relations - mathcmuedu

1 Determine whether the following relations are equivalence relations on the given set S If the relation is in fact an equivalence relation describe its equivalence classes (a) S = Nnf0;1g; (x;y) 2R if and only if gcd(x;y) > 1 (b) S = R; (a;b) 2R if and only if a2 + a = b2 + b: (c) S = R; (x;y) 2R if and only if there exists n 2Z such that



Searches related to relation d+equivalence pdf PDF

Using equivalence relations to de?ne rational numbers Consider the set S = {(xy) ? Z × Z: y 6= 0 } We de?ne a rational number to be an equivalence classes of elements of S under the equivalence relation (ab) ’ (cd) ?? ad = bc An equivalence class is a complete set of equivalent elements

What are equivalence relations?

Equivalence classes What makes equivalence relations so useful is they give us a way of ignoring information that is irrelevant to the task at hand. For example, suppose a and b are two very large natural numbers, each with several trillion (decimal) digits. We want to know what the last digit of ab is.

Which equivalence class is F?

Let F be any partition of the set S. Define a relation on S by x R y iff there is a set in F which contains both x and y. Then R is an equivalence relation and the equivalence classes of R are the sets of Pf: Since F is a partition, for each x in S there is one (and only one) set of F which contains x.

What is a leaner definition of equivalence?

A leaner de?nition is: If R is an equivalence relation on a set S, then we de?ne the equivalence class of an element x ? S to be the set of all elements of S equivalent to x. Then we need to prove: 5 Theorem 1.

What is an equivalence class?

An equivalence class is a complete set of equivalent elements. I.e., it’s a set of elements of S, all of which are equivalent to each other, and which contains all of the pairs that are equivalent to those pairs. (Stricly speaking we need to use some properties of equivalence relations to check that this makes sense ...more about that later.)

Aujourd"hui nous allons discuter :

•Rappel : relation d"équivalence •Nouveaux "nombres" :QetZ/mZ. •Calculer avecQetZ/mZ.MAT15001 of 40

Relations d"équivalences

Rappel. SoitUun ensemble avec une relationa≂bentre deux

élements deU.

Alors≂est une relation d"équivalence si pour chaquea,b,cdans

Uon aurait :

(i)a≂a; (ii)(a≂b)→(b≂a); (iii)((a≂b)?(b≂c))→(a≂c).MAT15002 of 40 Soit≂une relation d"équivalence surU. Eta?U.

C?(a):= {u?U|c≂u}.

Considère C?(a)?P(U).

L" ensemble des class esd"équivalence différentes :

U/≂:={C?(a)|a?U} ?P(U).

Et la fonction classification :

C?:U→U/≂.

Qui est surjective.

On a divisé Uen classes.MAT15003 of 40

On a C?(a) =C?(b)si et seulement sia≂b.

Les classes forment une

pa rtition de U: les classes sont non-vides, l"union des classes estU, et l"intersection de deux classes diférentes est vide.

MAT15004 of 40

m Pour chaque entierm>0, la relation≡mest une relation d"équivalence surZ.

La classe dens"écrit commeC ?m(n). On a

C?m(n) =C?m(n+3·m) =C?(n-1234·m)

Il y a exactementmclasses d"équivalence différentes. L"ensemble des classes d"équivalence s"écrit comme

Z/mZ:=Z/≡m

={C?m(0),C?m(1),C?m(2),...,C?m(m-1)}MAT15005 of 40

Ondéfinit :

C?m(n1) +C?m(n2) :=C?m(n1+n2);

C?m(n1)·C?m(n2) :=C?m(n1·n2).

Est-ce que ça fait du sens?

Ils se comportent comme des "nombres".

MAT15006 of 40

Autre exemple : Les fractions.

SoitU:={(n,d)?Z×Z|d?=0}.

Posons

(n,d)≂(n?,d?)si et seulement sind?=n?d. C"est une relation d"équivalence surU:MAT15007 of 40

Démonstration.

Soient(n1,d1),(n2,d2)et(n3,d3)trois éléments deU. C.-à-d.,n1,n2,n3trois entiers, etd1,d2,d3trois non-zéro entiers.

Il faut vérifier trois choses.

(i)(n1,d1)≂(n1,d1); c"est le cas parce qued1n1=d1n1.(ii) si(n1,d1)≂(n2,d2)alors(n2,d2)≂(n1,d1); c"est le cas car

n

1d2=n2d1implique quen2d1=n1d2.MAT15008 of 40

(Suite). (iii) Supposons(n1,d1)≂(n2,d2)et(n2,d2)≂(n3,d3). (Il faut montrer(n1,d1)≂(n3,d3).) Par cette hypothèse :n1d2=n2d1etn2d3=n3d2. Alors aussi n

1d2d3=n2d1d3etn2d3d1=n3d2d1etn1d2d3=n3d2d1. Donc

d

2(n1d3-n3d1) =0.

Nous savons

: si rs=0 etr?=0 alors nécessairements=0 (r,s entiers). Par hypothèsed2?=0 etd2(n1d3-n3d1) =0. Donc nécessairement (n1d3-n3d1) =0, oun1d3=n3d1, ou(n1,d1)≂(n3,d3). Alors en effet,≂est une relation d"équivalence surU.MAT15009 of 40 Nous connaissonsdéjà les classes d"équivalen ces!

Definition

Avec cette relation d"équivalence≂surU.

(i) Pour(n,d)?U(doncn,dsont deux entiers, dontd?=0) nous définissonsla fraction nd :=C?(n,d); la classe d"équivalence de(n,d)?U. (ii) Nous définissons

Q:=U/≂;

l"ensemble des classes d"équivalence.

MAT150010 of 40

En particulier

n1d 1=n2d 2 si et seulement si(n1,d1)≂(n2,d2) si et seulement si (par définition) n

1d2=n2d1.

Par exemple25

=615 car 2·15=6·5=30. Et 20 n"est pas définie!MAT150011 of 40 Nousdéfinissons l"addition et la multiplication : n 1d 1+n2d

2:=n1d2+n2d1d

1d2; n 1d

1·n2d

2:=n1n2d

1d2.

Est-ce que ça fait du sens?

MAT150012 of 40

Il y a quelque chose à vérifier : est-ce que ça dépend du choix d"écrire la fraction? Si n 1d

1=n?1d

?1etn2d

2=n?2d

?2 est-ce que aussi n

1d2+n2d1d

1d2=n?1d?2+n?2d?1d

?1d?2 etn?1n?2d ?1d?2=n?1n?2d ?1d?2? OUI. (Ce sera une exercice pour le TP de la semaine prochaine.)

MAT150013 of 40

Il y a une fonction injective

ι:Z→Q

avec

ι(n) :=n1

Puis on identifien=n1

(malgré quenest un entier et pas une fraction).

MAT150014 of 40

Autre exemple

SoitEun ensemble fini etU=P(E). Une fonction

propositionnelle avec univers de discoursU×Uest

P(A1,A2) := "|A1|=|A2|"

Nous allons classifier les sous-ensembles selon leur taille. A

1≂A2siP(A1,A2)vraie, c-à-d., si|A1|=|A2|MAT150015 of 40

On a trivialement

•A1≂A1, •siA1≂A2alorsA2≂A1, •siA1≂A2etA2≂A3alorsA1≂A3.MAT150016 of 40 Uneclasse d"équ ivalenceest la réunion d etous les éléments de

P(E)d"un même taille. Notation :

?E i? :={A?E| |A|=i} ?P(E), l"ensemble de tous les sous-ensembles deEavec exactementi

éléments.

MAT150017 of 40

La collection des classes (différentes) est notée :

U/≂={?E

0? ,?E 1? ,?E 2? ,...,?E n? ? P(U)= P(P(E))MAT150018 of 40 Chaque élément deU=P(E)(=chaque sous-ensemble deE) est dans une uniqu e classe d"équivalence. Et donc

P(E) =n?

i=0? E i? est une pa rtitionde P(E): c.-à-d. chaque?E i?est non-vide, et?E i?et?E j?sont disjoints si i?=j.

En conséquence :

|P(E)|=n? i=0|?E i?

MAT150019 of 40

SiE={a,b,c}.

E 0? ?E 1? ={{a},{b},{c}} ?E 2? ={{b,c},{a,c},{a,b}} ?E 3? ={E}MAT150020 of 40 La collection des classes est un ensemble soi-même!

P(E)/≂={?E

0? ,?E 1? ,?E 2? ,...,?E n? ? P(U)= P(P(E))

Il y a une fonction naturelle :

f:P(E)→P(E)/≂ où on définitf(A) =?E |A|?. C.-à-d., on envoie chaque élément vers la classe qui le contient.

MAT150021 of 40

Et la fonctionf:P(E)→P(E)/≂devient

f=?{∅} {a} {b} {c} {b,c} {a,c} {a,b}E?E 0? ? E 1? ? E 1? ? E 1? ? E 2? ? E 2? ? E 2? ? E 3??

Par exemplef({a,c}) =?E

2?.MAT150022 of 40

Saisirles différence s:

U=P(E) =?E

0? ??E 1? ??E 2? ??E 3?

U/≂={?E

0? ,?E 1? ,?E 2? ,?E 3? } ?P(P(E)).

On a :

a?{ a,b},{a,b}? ?E 2? ,?E 2? ?(U/≂)

Mais :

{a,b}? E,?E 2? ?U.MAT150023 of 40quotesdbs_dbs35.pdfusesText_40
[PDF] montrer que r est une relation d'équivalence

[PDF] relation binaire exercices corrigés pdf

[PDF] relation d'équivalence et classe d'équivalence

[PDF] exo7 relation binaire

[PDF] liste des verbes d'action

[PDF] liste des verbes d'état cm2

[PDF] exercice sur les verbes d'état et d'action cm2

[PDF] les verbes d'action pdf

[PDF] film éthique et culture religieuse

[PDF] les verbes d'état pdf

[PDF] tous les verbes d'état

[PDF] liste des verbes attributifs

[PDF] surclassement pop corn c'est quoi

[PDF] upload file magazines gaumont 262 web

[PDF] exercice de maths rapport et proportion