[PDF] RDM – Ossatures Manuel dexercices





Previous PDF Next PDF



CARACTERISTIQUES DES SECTIONS PLANES

On demande de calculer : - Son centre de gravité. - Les moments d'inertie par rapport à xG et yG. Exercice 4. Mêmes questions pour la section 



1 Dr Belhadj A.F IAST 2021 TD N : 04 Exercice 01 : Déterminer pour

Les caractéristiques géométriques des sections droites. 1. Dr Belhadj A.F. IAST Soient les figures ci-dessous représentants des sections planes. Déterminer ...



Polycopié

) ;. 7- Les sections planes perpendiculaires à l'axe de la barre restent planes de sollicitation et des caractéristiques géométriques de la section ...



Problèmes sur le chapitre 4

6 avr. 2023 Réponse : G (28.18; 13.64). © R. Itterbeek Résistance des Matériaux - Caractéristiques géométriques des sections planes (exercices sup.) - ex4.1 ...



Caractéristiques des sections droites Exercice 1: Section en T

5 déc. 2015 Question 1: Déterminer la position de son centre de gravité G. Méthode 1 : Calcul intégral. Il y a un plan de symétrie vertical ...



Résistance des matériaux Cours et exercices corrigées

Dans le second chapitre on aborde le cisaillement simple. Il s'agit de la torsion et les caractéristiques géométriques des sections planes respectivement aux 



Chap 8 Caractérisques géométriques des sections V2001

IV – MOMENT STATIQUE D'UNE SECTION. V – CARACTERISTIQUES GEOMETRIQUES DES PROFILES. METALLIQUES. Page 2. T. G. C. Mécanique. Caractéristiques géométriques 



Résistance Des Matériaux

9.4 Caractéristiques géométriques des sections . Résistance des matériaux : cours exercices corrigés. Sciences sup. Dunod



RDM_BI.pdf

II/ Caractéristiques géométriques des sections planes………………………………….. II.1 }(Voir Exercices caractéristiques géométriques des sections). = .4. . 4.



CHAPITRE 4. CARACTÉRISTIQUES GÉOMÉTRIQUES DES

Définition : Le moment statique d'une section est la somme des produits de surfaces élémentaires de cette section par la distance d à un élément de référence r 



CARACTERISTIQUES DES SECTIONS PLANES

On demande de calculer : - Son centre de gravité. - Les moments d'inertie par rapport à xG et yG. Exercice 4. Mêmes questions pour la section 



Elaboré par : Dr Imene BENAISSA République Algérienne

exercices corrigés destiné aux étudiants de 2ème année (S4) licence de Génie civil



Chap 8 Caractérisques géométriques des sections V2001

Pour calculer les caractéristiques géométriques des sections nous devons savoir calculer la CONCLUSION DE CET EXERCICE : METHODE POUR LE CALCUL DE G.



Polycopié

3 - Caractéristiques géométriques de la section Exercices d'application ... 7- Les sections planes perpendiculaires à l'axe de la barre restent planes ...



RDM – Ossatures Manuel dexercices

E2 : Ossature plane . 3 Sections droites : caractéristiques et contraintes ... La géométrie existe dans la biblioth`eque d'ossatures paramétrées.



CHAPITRE 4. CARACTÉRISTIQUES GÉOMÉTRIQUES DES

Sep 10 2022 Ces caractéristiques sont : aire des sections transversales



Résistance Des Matériaux

Nov 11 2020 Ainsi



Résistance des Matériaux

des caractéristiques géométriques d'une section plane. En effet pour une sollicitation de traction ou compression simple



MECANIQUE DU SOLIDE NIVEAU 1 LA STATIQUE CORRIGE

Exercice d'application : Dispositif de levage . CARACTERISTIQUES GEOMETRIQUES DES SECTIONS . ... 4 - Rendre compte d'une activité. X X. CORRIGE ...



RECUEILS DEXERCICES CORRIGES

Caractéristiques géométriques des sections. Cours de RDM – M A. KONIN. 2. EXEMPLES PORTANT SUR LES CHAPITRES 1 & 2. 1. CARACTERISTIQUES GEOMETRIQUES DES 



RECUEILS D’EXERCICES CORRIGES - F2School

géométrique de la section 2) Cette section comporte 4 gaines de 70 mm de diamètre situées respectivement à 105 mm et 245 mm de la fibre inférieure Le centre de gravité des gaines est à 0 925 m de la fibre supérieure Déterminer les caractéristiques de la section nette: l’aire de la section B n [m



CARACTERISTIQUES DES SECTIONS PLANES - Cesfa BTP

CENTRE DE GRAVITE D ’UNE SECTION PLANE La distance dG du centre de gravité d’une section plane S à une droite ? est définie par la relation suivante : S m dG = ? Cette relation permet aussi de calculer le moment statique d’une section connaissant la position de son centre de gravité

Comment fonctionne la géométrie plane?

On commença par de véritables projections de la sphère sur un plan ou sur une surface développable, d'après les lois de la perspective. L’idée était aussi de simplifier les calculs(cap, distance) : complexes sur le modèle sphérique ou ellipsoïdal de la Terre, ils sont ramenés à des calculs de géométrie plane sur la carte.

Comment calculer les caractéristiques géométriques?

D’après la formule de BLONDEL on a : 0.59?g +2h ?0.66et 2h +g =0.64 ? (1) Les résultats des caractéristiques géométriques calculées sont : Hauteur de contre marche : h = 17cm La largeur de la marche : g = 30cm Nombre de contre marches : n= 9 Nombre de marches : (n-1) = 8 Vérification de la formule de BLONDEL :

Quels sont les différents types de cours de géométrie plane?

Doc Géométrie plane, cours de géométrie plane et introduction aux groupes de la géométrie. OEF Petits tests de programmation, collection d'exercices testant la compréhension de programmes simples. Chimie thérapeutique, collection d'exercices en chimie thérapeutique.

Quels sont les documents de la géométrie plane?

Doc Frises et Pavages, document sur les frises et les pavages conduisant à la notion de groupe. Doc Géométrie plane, cours de géométrie plane et introduction aux groupes de la géométrie.

RDM { Ossatures

Manuel d'exercices

Yves Debard

Institut Universitaire de Technologie du Mans

26 juin 2006 { 29 mars 2011

Table des matiµeres

1 Exemples

1

Exemple 1 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Exemple 3 : Anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exemple 4 : Plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Exemple 5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Exemple 6 : Modes propres d'un anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Exemple 7 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Analyse statique

16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E2 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E3 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E4 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E5 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E6 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E7 : Poutre courbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E8 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 E9 : Poutre µa section droite variable soumise µa son poids propre . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

S2 : Torsion d'une poutre rectangulaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 . . . . . . . . . . . . . . . 45 S11 : Contraintes dans une section droite : °exion-torsion . . . . . . . . . . . . . . . . . . . 46

S12 : Cisaillement du µa l'e®ort tranchant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 S13 : Contrainte normale dans une poutre µa section droite variable . . . . . . . . . . . . . . 49 . . . . . . . . . . . . . . . 50

S15 : Section droite µa parois minces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 S16 : Contraintes tangentielles dans un caisson multicellulaire . . . . . . . . . . . . . . . . . 53 3 . . . . . . . . . . . . 55

S18 : Flexion - torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 S19 : Contraintes normales dans une poutre µa section droite variable . . . . . . . . . . . . . 59 60

F1 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F2 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

F3 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F4 : Poutre console { °exion-torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 F7 : Flambement d'un m^at vertical sous son poids propre . . . . . . . . . . . . . . . . . . . 71

F8 : Flambement d'une poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F9 : Flambement d'un cadre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Modes propres

75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D2 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . 77

D4 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D6 : Ossature plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 D7 : Vibrations transversales d'une poutre droite libre . . . . . . . . . . . . . . . . . . . . . 81 D8 : Premier mode propre d'une poutre console avec masses . . . . . . . . . . . . . . . . . . 82 83

Chapitre 1

Exemples

Exemple 1 : Portique plan

SoientAl'aire des sections droites etIZleur moment quadratique par rapport µa l'axeZ. L'ossature Le n¾ud 2 porte une force de composantes(P;0;0).

On donne :

L= 2m

A= 16cm2,IZ= 135cm4

E= 200000MPa

P= 10000N

2RDM { Ossatures

Fichier

Ossature plane

Poutres

Sections droites

Section droite quelconque

A= 16cm2,IZ= 135cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une charge de composantes (10000, 0, 0) N.

Module de Young = 200000 MPa

Calculer

Paramµetres

Modµele de Bernoulli

Calculer

Analyse statique

u

2= 2:2144mm; v2=¡0:0017mm; µ2z=¡0:0388º

u

3= 0:0245mm; v3=¡0:0033mm; µ3z= 0:1510º

4z=¡0:0754º

Actions de liaison:

R

1x=¡6077:4N; R1y= 533:4N; M1z= 3221:6N.m

R

4x=¡3922:6N; R4y=¡533:4N

Manuel d'exercices3

Problµeme:

Les poutres1¡2et1¡4sont en acier :

module de Young = 200000 MPa coe±cient de dilatation = 11 10

¡6K¡1

La poutre1¡3est en laiton :

module de Young = 100000 MPa coe±cient de dilatation = 18 10

¡6K¡1

Le n¾ud 1 porte une charge

~Pde composantes(0;¡10000;0)N.

4RDM { Ossatures

Poutres

Relaxations

Sections droites

Modi¯er la couleur courante

module de Young = 100000 MPa , coe±cient de dilatation = 18E¡6K¡1 module de Young = 200000 MPa , coe±cient de dilatation = 11E¡6K¡1

Liaisons

Cas de charges

Le n¾ud 1 porte une force de composantes(0;¡10000;0)N

Calculer

Analyse statique

u

1= 0; v1=¡0:96mm

Allongement des poutres:

1¡2= ¢1¡4= 0:768mm;¢1¡3= 0:960mm

E®orts normaux:

N

1¡2=N1¡4= 4370N; N1¡3= 3008N

Manuel d'exercices5

Exemple 3 : Anneau plan

On donne :

E= 200000MPa ,º= 0:3

c= 10mm ,L=R= 50mm p=¡10N/mm quart de l'anneau.

Fichier

Bibliothµeque

Ossature plane

6RDM { Ossatures

E= 200000MPa ,º= 0:3

Sections droites

Cas de charges

Calculer

Paramµetres

Modµele de Timoshenko

Calculer

Analyse statique

v

1=(6¼2+ 17¼¡6)pR4

24(2 +¼)EIz+¼ pR2

4EA+(2 +¼)pR2

4GAky =¡0:324026¡0:000982¡0:005013 =¡0:330021mm u

3=(¼¡14)pR4

6(2 +¼)EIz+pR2

2EA¡pR2

2GAky = 0:131992¡0:000625 + 0:001950 = 0:133317mm

Actions de liaisons:

F

1x= 0; M1z=(14 + 3¼)pR2

6(2 +¼)=¡18983N.mm

F

3y=¡pR= 500N; M3z=(2 + 3¼)pR2

3(2 +¼)=¡18567N.mm

Mf z2=¡4pR2

3(2 +¼)= 6483N.mm

Contraintes normales:

a b¾ =¨(14 + 3¼)pR2 (2 +¼)c3=§113:90MPa c d¾ =pR c

2¨2(2 + 3¼)pR2

(2 +¼)c3=½106:10

¡116:10MPa

Manuel d'exercices7

v

1=¡0:329765mm; u3= 0:133290mm

Actions de liaison:

F

1x= 0N; M1z=¡18977N.mm; F3y= 500N; M3z=¡18523N.mm

Contraintes normales:

a= 113:86MPa; ¾b=¡113:86MPa; ¾c= 106:14MPa; ¾d=¡116:14MPa

Remarque:

Avec le module RDM {

obtient : v

1=¡0:328065mmu3= 0:133370mm

a= 113:96MPa; ¾b=¡113:96MPa; ¾c= 99:66MPa; ¾d=¡124:20MPa 3 ] donne : c= 99:10MPa; ¾d=¡124:00MPa

8RDM { Ossatures

Exemple 4 : Plancher

1990, pages 342-345.

Problµeme:

Le n¾ud 2 porte une force de composantes(0;0;50)kN et un couple de comosantes(0;100;0)kN.m. La poutre1¡2porte en son milieu une force ponctuelle de composantes(0;0;¡150)kN. (0;0;¡75)kN/m.

On donne :

L= 2m module de Young = 200000 MPa , coe±cient de Poisson = 0.25 aire = 10

2cm2, constante de torsion de Saint VenantJ= 2105cm4,IZ= 105cm4

P= 5000daN

Manuel d'exercices9

Poutres

Sections droites

Section quelconque

Aire = 100 cm

2

Constante de torsion de Saint Venant :J= 2E5 cm4

Moment quadratique :IZ= 1E5 cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une forceFz= 50kN

Le n¾ud 2 porte un coupleMy= 100kN.m

Module de Young = 200000 MPa , coe±cient de Poisson = 0.25

Calculer

Analyse statique

w

2=¡1:2182mm; µ2x=¡0:35599 10¡3rad; µ2y=¡0:14976 10¡3rad

w

4=¡2:0993mm; µ4x= 0:28856 10¡3rad; µ4y= 0:18376 10¡3rad

Actions de liaison:

F

1z= 93:528kN; M1x= 9:493kN.m; M1y=¡163:092kN.m

F

3z= 34:452kN; M3x= 14:240kN.m; M3y= 76:393kN.m

F

5z= 214:940kN; M5x=¡11:543kN.m; M5y=¡239:068kN.m

F

6z= 57:080kN; M6x=¡128:588kN.m; M6y=¡7:351kN.m

10RDM { Ossatures

Exemple 5 : Ossature spatiale

Problµeme:

des rectangles pleins. n¾ud x(m) y(m) z(m) 1 0 0 0 2 0 0 4 3 0 8 4 4 0 11 4 5 3 8 4 6 3 8 0

Le n¾ud 4 porte une force

~Fde composantes(0;0;¡1000)daN .

Manuel d'exercices11

Poutres

Module de Young = 100000 MPa , coe±cient de Poisson = 0.2987

Sections droites

Changer les poutres3¡5et5¡6de groupe

Rectangle plein :600£300mm

Rectangle plein :500£300mm

Rectangle plein :800£300mm

Repµere local

Modi¯er le repµere local de la poutre1¡2(angle = 90º)

Liaisons

Cas de charges

Le n¾ud 4 porte une charge de composantes(0;0;¡1000)daN

Calculer

Paramµetres du calcul

Modµele de Timoshenko

Calculer

Analyse statique

M to Mf Y o Mfquotesdbs_dbs35.pdfusesText_40
[PDF] mots croisés la presse super grille

[PDF] les métiers de la finance internationale

[PDF] mot croise cyberpress

[PDF] finance d'entreprise cours

[PDF] flexion plane simple exercice corrigé pdf

[PDF] flexion simple définition

[PDF] contrainte de flexion

[PDF] cours rdm

[PDF] toute la finance d'entreprise en pratique pdf

[PDF] finance pour les nuls pdf gratuit

[PDF] les bases de la finance pdf

[PDF] la finance d'entreprise pour les nuls

[PDF] mémoire analyse financière d'une entreprise pdf

[PDF] comptabilité financière et comptabilité de gestion

[PDF] mots croises solution