[PDF] Résistance des matériaux : élasticité méthodes énergétiques





Previous PDF Next PDF



CORRIGE

CONTRAINTE DE CISAILLEMENT EN FLEXION SIMPLE. exercice : Déterminer l'allongement ?L d'un entrait d'une charpente sachant que.



chapitre-6-flexion-simple.pdf

Une poutre est sollicitée en flexion plane simple lorsque le système des forces extérieures se réduit à un système coplanaire et que toutes les forces sont.



RESISTANCE DES MATERIAUX

Exercices avec solutions IV.5) Contraintes normales en flexion plane ... satisfaisantes des cas de sollicitations simples (flexion simple) et composée.



Résistance Des Matériaux

11 nov. 2020 7.6 Flexion plane simple . ... théorie des poutres ou de l'élasticité plane. ... Résistance des matériaux : cours exercices corrigés.



RESISTANCE DES MATERIAUX

Dans une éprouvette sollicitée en flexion plane une face est en traction



Résistance des matériaux : élasticité méthodes énergétiques

20 jui. 2011 2.5.2 Exercices. MEF FLE 1 : flexion dans le plan {x z}. Soit une poutre droite sollicitée en flexion simple dans le plan {x



RDM – Ossatures Manuel dexercices

Manuel d'exercices. Yves Debard Exemple 2 : Treillis plan `a nœuds articulés . ... S10 : Contrainte normale dans une section droite : flexion déviée .



Elaboré par : Dr Imene BENAISSA République Algérienne

exercices corrigés destiné aux étudiants de 2ème année (S4) licence de Génie Le quatrième chapitre concerne la flexion simple : dans ce chapitre nous ...



Méthode des éléments finis : flexion des poutres `a plan moyen

3 fév. 2011 3.2 Exercices . ... Le plan 1x yl est un plan de symétrie de la poutre. ... simple. Soit EIz la rigidité linéique de flexion.



Travaux dirigés de résistance des matériaux

Corrigé TD 1. dans son plan de symétrie par une charge concentrée et une change ... Sollicitation de traction + sollicitation de flexion simple ...



Flexion plane simple

Flexion plane simple MOHAMED Exercice n°3 : Le pont roulant propose se compose d ?une poutre principale d ?un palan mobile entre A et B soulevant une charge de poids P (P = 2 000 daN) La poutre principale est schØmatisØe comme l ?indique la figure si a = 2 500 et b = 3 000 Le poids de la poutre est nØgligØ



Exercice corrigé : La flexion simple

Exercice corrigé : La flexion simple 1 Exercice 03 : Calculer les dimensions de la poutre rectangulaire illustrée en tenant compte du fait que la hauteur doit être double de la largeur et la contrainte admissible est de 1400 [Kg/cm²] en tension comme en compression 3 Solution : 1-Calcul des réactions d’appuis 7 51 [ ]; 7 74 [ ] 2 5 3 1



Flexion plane simple

Développement de connaissances Etude de la flexion d’une poutre encastrée à une extrémité Soit une charge (2) raccroché à un bras (1) fixé sur un poteau (3) Le bras (1) est assimilé à une poutre rectangulaire à une longueur 200 mm largeur b=24mmet hauteur h =10mm



Chapitre 6 Flexion Simple - Technologue Pro

FLEXION Simple Il existe plusieurs types de flexions (pure plane déviée) Nous limiterons notre étude au cas de la flexion plane simple 6 1 Hypothèses En plus des hypothèses déjà énoncées au début du cours de RDM la flexion plane simple nous amène à supposer que : la ligne moyenne de la poutre est rectiligne

R´esistance des mat´eriaux :

´elasticit´e,

m´ethodes ´energ´etiques, m´ethode des ´el´ements finis

Rappels de cours

et exercices avec solutions

Yves Debard

Institut Universitaire de Technologie du Mans

D´epartement G´enie M´ecanique et Productique

20 juin 2011

Table des mati`eres

1

´Elasticit´e

1

1.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 D´eplacements et d´eformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contraintes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Loi de comportement ou loi constitutive

. . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Cas particulier : ´etat de contraintes planes

. . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Formules math´ematiques

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 M´ethode des ´el´ements finis : approche r´esistance des mat´eriaux

25

2.1 Rappels : r´esolution d'un probl`eme stationnaire

. . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Partition des degr´es de libert´e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Calcul des d´eplacements inconnus

. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Calcul des r´eactions d'appui

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Poutre soumise `a un effort normal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Treillis plans `a noeuds articul´es

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Poutre soumise `a un moment de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli

. . . . . . . . . . . . . . . . . 58

2.5.1 Rappels : flexion dans le plan{xy}

. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 M´ethodes ´energ´etiques : poutres

83

3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Expression de l'´energie de d´eformation en fonction des forces appliqu´ees : for-

mule de Clapeyron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Th´eor`eme de r´eciprocit´e de Maxwell-Betti

. . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Th´eor`eme de Castigliano

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Th´eor`eme de M´enabr´ea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.5

´Energie de d´eformation d'une poutre

. . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.6 Formules math´ematiques utiles

. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IIExercices de resistance des materiaux

4 M´ethode des ´el´ements finis

121

4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.1

´Energie de d´eformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.2

´Energie cin´etique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.3

´Energie potentielle et ´el´ements finis

. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.4 Modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Assemblage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 126

4.2.3 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.4 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.5 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 132

4.2.6 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 134 4.2.7 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 137

4.2.8 Exercice : modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.9

´El´ement fini de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.10

´El´ement fini de flexion : mod`ele de Bernoulli . . . . . . . . . . . . . . . . . . . 144

4.2.11 Exercice : ´elasticit´e plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapitre 1

Elasticit´e

1.1 Rappels

Les d´eplacements et les d´eformations sont petits.

1.1.1 D´eplacements et d´eformations

Vecteur d´eplacement :

⃗u=---→M0M ,{u}= u(x,y,z) v(x,y,z) w(x,y,z) (1.1.1)

Tenseur des d´eformations :

xx1 2

γxy1

2

γxz

1 2

γxyεyy1

2

γyz

1 2

γxz1

2

γyzεzz

,[ε]T= [ε](1.1.2) xx=∂u ∂x , εyy=∂v ∂y , εzz=∂w ∂z (1.1.3a) xy=∂u ∂y +∂v ∂x , γxz=∂u ∂z +∂w ∂x , γyz=∂w ∂y +∂v ∂z (1.1.3b) Allongement unitaire enMdans la direction{n}= n x n y n z

ε(M,⃗n) ={n}T[ε(M)]{n}

Glissement enMdans les directions orthogonales⃗naet⃗nb: γ(M,⃗na,⃗nb) = 2{nb}T[ε(M)]{na},{nb}T{na}= 0(1.1.5)

Variation relative de volume :

V(M) = tr[ε] =εxx+εyy+εzz(1.1.6)

2Exercices de resistance des materiaux

1.1.2 Contraintes

Vecteur contrainte sur la facette⃗nenM:

T(M,⃗n) =σn⃗n+⃗τn(1.1.7a)

Soit{n}=

n x n y n z un vecteur unitaire enM. Le vecteur contrainte sur la facette⃗nenMest donn´e par la formule de Cauchy : T x T y T z xxσyxσzx xyσyyσzy xzσyzσzz n x n y n z ,{T}= [σ(M)]{n}(1.1.8) o`u [σ(M)] est le tenseur des contraintes enM.

Le tenseur des contraintes est sym´etrique :

[σ] = [σ]Tsoitσxy=σyx, σxz=σzx, σyz=σzy(1.1.9)

La contrainte normale sur la facette⃗nest :

n={n}T[σ]{n} =n2xσxx+n2yσyy+n2zσzz+ 2nxnyσxy+ 2nxnzσxz+ 2nynzσyz(1.1.10) Soientσ1,σ2etσ3les trois contraintes principales en un pointMd'un solide. Les crit`eres de

Rankine, Von Mises et de Tresca s'´ecrivent :

1 2

1.1.3 Loi de comportement ou loi constitutive

Si le mat´eriau est isotrope, la loi de comportement s'´ecrit : xx=1 E (σxx-ν(σyy+σzz)) yy=1 E (σyy-ν(σxx+σzz)) zz=1 E (σzz-ν(σxx+σyy))(1.1.12a) xy=σxy G , γxz=σxz G , γyz=σyz G , G=E

2(1 +ν)(1.1.12b)

o`uEetνsont respectivement le module de Young et le coefficient de Poisson du mat´eriau.

Elasticite3

1.1.4 Cas particulier : ´etat de contraintes planes

Le tenseur des contraintes se r´eduit `a :

xxσxy0 xyσyy0

0 0 0

(1.1.13) d'o`u l'expression du tenseur des d´eformations : xx1 2

γxy0

1 2

γxyεyy0

0 0εzz

(1.1.14) et de la loi de comportement : xx=E

1-ν2(εxx+ν εyy), σyy=E

1-ν2(εyy+ν εxx)

zz=-ν E (σxx+σyy), σxy=Gγxy, G=E

2(1 +ν)(1.1.15)

Les contraintes et les d´eformations principales sont : 1 2} =σxx+σyy 2 ±1 2 (σxx-σyy)2+ 4σ2xy, σ3= 0(1.1.16) 1 2} =εxx+εyy 2 ±1 2 (εxx-εyy)2+γ2xy, ε3=εzz(1.1.17)

Les directions principales sont :

{n1}= cosθ1 sinθ1

0

,{n2}= -sinθ1 cosθ1

0

,{n3}= 0 0

1

avec tanθ1=σ1-σxx xy(1.1.18) Les crit`eres de Rankine, Von Mises et de Tresca se r´eduisent `a : L'allongement unitaire enMdans la direction{n}= n x n y

0

se r´eduit `a : ε(M,⃗n) ={n}T[ε(M)]{n}=n2xεxx+n2yεyy+nxnyγxy(1.1.20)

4Exercices de resistance des materiaux

1.1.5 Formules math´ematiques

Valeurs et vecteurs propres d'une matrice sym´etrique de dimension deux `a coefficients r´eels :

Consid´erons la matrice sym´etrique [S] :

[S] =[SxxSxy S xySyy] ,([S]T= [S])(1.1.21) Les valeurs propresSn=1,2et les vecteurs propres{n}sont les solutions de l'´equation : [S]{n}=Sn{n},[SxxSxy S xySyy]{ nx n y} =Sn{nx n y} avecn2x+n2y= 1(1.1.22) soit :

Sxx-SnSxy

S xySyy-Sn]{ nx n y} ={0 0} (1.1.23) Cette ´equation n'a de solution autre que la solution trivialenx=ny= 0 que si et seulement si : det [Sxx-SnSxy S xySyy-Sn] = 0(1.1.24) d'o`u l'´equation caract´eristique : S

2n-(Sxx+Syy)|

{z tr[S]=S1+S2S n+SxxSyy-S2xy| {z det[S]=S1S2= 0(1.1.25) et les valeurs propres : S 1 Squotesdbs_dbs35.pdfusesText_40
[PDF] flexion simple définition

[PDF] contrainte de flexion

[PDF] cours rdm

[PDF] toute la finance d'entreprise en pratique pdf

[PDF] finance pour les nuls pdf gratuit

[PDF] les bases de la finance pdf

[PDF] la finance d'entreprise pour les nuls

[PDF] mémoire analyse financière d'une entreprise pdf

[PDF] comptabilité financière et comptabilité de gestion

[PDF] mots croises solution

[PDF] mots croisés ? imprimer

[PDF] mots croises gratuits force 3

[PDF] mots croisés dictionnaire

[PDF] mots croisés gratuit

[PDF] mots croisés aide