[PDF] RDM – Ossatures Manuel dexercices





Previous PDF Next PDF



CORRIGE

CONTRAINTE DE CISAILLEMENT EN FLEXION SIMPLE. exercice : Déterminer l'allongement ?L d'un entrait d'une charpente sachant que.



chapitre-6-flexion-simple.pdf

Une poutre est sollicitée en flexion plane simple lorsque le système des forces extérieures se réduit à un système coplanaire et que toutes les forces sont.



RESISTANCE DES MATERIAUX

Exercices avec solutions IV.5) Contraintes normales en flexion plane ... satisfaisantes des cas de sollicitations simples (flexion simple) et composée.



Résistance Des Matériaux

11 nov. 2020 7.6 Flexion plane simple . ... théorie des poutres ou de l'élasticité plane. ... Résistance des matériaux : cours exercices corrigés.



RESISTANCE DES MATERIAUX

Dans une éprouvette sollicitée en flexion plane une face est en traction



Résistance des matériaux : élasticité méthodes énergétiques

20 jui. 2011 2.5.2 Exercices. MEF FLE 1 : flexion dans le plan {x z}. Soit une poutre droite sollicitée en flexion simple dans le plan {x



RDM – Ossatures Manuel dexercices

Manuel d'exercices. Yves Debard Exemple 2 : Treillis plan `a nœuds articulés . ... S10 : Contrainte normale dans une section droite : flexion déviée .



Elaboré par : Dr Imene BENAISSA République Algérienne

exercices corrigés destiné aux étudiants de 2ème année (S4) licence de Génie Le quatrième chapitre concerne la flexion simple : dans ce chapitre nous ...



Méthode des éléments finis : flexion des poutres `a plan moyen

3 fév. 2011 3.2 Exercices . ... Le plan 1x yl est un plan de symétrie de la poutre. ... simple. Soit EIz la rigidité linéique de flexion.



Travaux dirigés de résistance des matériaux

Corrigé TD 1. dans son plan de symétrie par une charge concentrée et une change ... Sollicitation de traction + sollicitation de flexion simple ...



Flexion plane simple

Flexion plane simple MOHAMED Exercice n°3 : Le pont roulant propose se compose d ?une poutre principale d ?un palan mobile entre A et B soulevant une charge de poids P (P = 2 000 daN) La poutre principale est schØmatisØe comme l ?indique la figure si a = 2 500 et b = 3 000 Le poids de la poutre est nØgligØ



Exercice corrigé : La flexion simple

Exercice corrigé : La flexion simple 1 Exercice 03 : Calculer les dimensions de la poutre rectangulaire illustrée en tenant compte du fait que la hauteur doit être double de la largeur et la contrainte admissible est de 1400 [Kg/cm²] en tension comme en compression 3 Solution : 1-Calcul des réactions d’appuis 7 51 [ ]; 7 74 [ ] 2 5 3 1



Flexion plane simple

Développement de connaissances Etude de la flexion d’une poutre encastrée à une extrémité Soit une charge (2) raccroché à un bras (1) fixé sur un poteau (3) Le bras (1) est assimilé à une poutre rectangulaire à une longueur 200 mm largeur b=24mmet hauteur h =10mm



Chapitre 6 Flexion Simple - Technologue Pro

FLEXION Simple Il existe plusieurs types de flexions (pure plane déviée) Nous limiterons notre étude au cas de la flexion plane simple 6 1 Hypothèses En plus des hypothèses déjà énoncées au début du cours de RDM la flexion plane simple nous amène à supposer que : la ligne moyenne de la poutre est rectiligne

RDM { Ossatures

Manuel d'exercices

Yves Debard

Institut Universitaire de Technologie du Mans

26 juin 2006 { 29 mars 2011

Table des matiµeres

1 Exemples

1

Exemple 1 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Exemple 3 : Anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exemple 4 : Plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Exemple 5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Exemple 6 : Modes propres d'un anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Exemple 7 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Analyse statique

16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E2 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E3 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E4 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E5 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E6 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E7 : Poutre courbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E8 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 E9 : Poutre µa section droite variable soumise µa son poids propre . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

S2 : Torsion d'une poutre rectangulaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 . . . . . . . . . . . . . . . 45 S11 : Contraintes dans une section droite : °exion-torsion . . . . . . . . . . . . . . . . . . . 46

S12 : Cisaillement du µa l'e®ort tranchant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 S13 : Contrainte normale dans une poutre µa section droite variable . . . . . . . . . . . . . . 49 . . . . . . . . . . . . . . . 50

S15 : Section droite µa parois minces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 S16 : Contraintes tangentielles dans un caisson multicellulaire . . . . . . . . . . . . . . . . . 53 3 . . . . . . . . . . . . 55

S18 : Flexion - torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 S19 : Contraintes normales dans une poutre µa section droite variable . . . . . . . . . . . . . 59 60

F1 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F2 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

F3 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F4 : Poutre console { °exion-torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 F7 : Flambement d'un m^at vertical sous son poids propre . . . . . . . . . . . . . . . . . . . 71

F8 : Flambement d'une poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F9 : Flambement d'un cadre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Modes propres

75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D2 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . 77

D4 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D6 : Ossature plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 D7 : Vibrations transversales d'une poutre droite libre . . . . . . . . . . . . . . . . . . . . . 81 D8 : Premier mode propre d'une poutre console avec masses . . . . . . . . . . . . . . . . . . 82 83

Chapitre 1

Exemples

Exemple 1 : Portique plan

SoientAl'aire des sections droites etIZleur moment quadratique par rapport µa l'axeZ. L'ossature Le n¾ud 2 porte une force de composantes(P;0;0).

On donne :

L= 2m

A= 16cm2,IZ= 135cm4

E= 200000MPa

P= 10000N

2RDM { Ossatures

Fichier

Ossature plane

Poutres

Sections droites

Section droite quelconque

A= 16cm2,IZ= 135cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une charge de composantes (10000, 0, 0) N.

Module de Young = 200000 MPa

Calculer

Paramµetres

Modµele de Bernoulli

Calculer

Analyse statique

u

2= 2:2144mm; v2=¡0:0017mm; µ2z=¡0:0388º

u

3= 0:0245mm; v3=¡0:0033mm; µ3z= 0:1510º

4z=¡0:0754º

Actions de liaison:

R

1x=¡6077:4N; R1y= 533:4N; M1z= 3221:6N.m

R

4x=¡3922:6N; R4y=¡533:4N

Manuel d'exercices3

Problµeme:

Les poutres1¡2et1¡4sont en acier :

module de Young = 200000 MPa coe±cient de dilatation = 11 10

¡6K¡1

La poutre1¡3est en laiton :

module de Young = 100000 MPa coe±cient de dilatation = 18 10

¡6K¡1

Le n¾ud 1 porte une charge

~Pde composantes(0;¡10000;0)N.

4RDM { Ossatures

Poutres

Relaxations

Sections droites

Modi¯er la couleur courante

module de Young = 100000 MPa , coe±cient de dilatation = 18E¡6K¡1 module de Young = 200000 MPa , coe±cient de dilatation = 11E¡6K¡1

Liaisons

Cas de charges

Le n¾ud 1 porte une force de composantes(0;¡10000;0)N

Calculer

Analyse statique

u

1= 0; v1=¡0:96mm

Allongement des poutres:

1¡2= ¢1¡4= 0:768mm;¢1¡3= 0:960mm

E®orts normaux:

N

1¡2=N1¡4= 4370N; N1¡3= 3008N

Manuel d'exercices5

Exemple 3 : Anneau plan

On donne :

E= 200000MPa ,º= 0:3

c= 10mm ,L=R= 50mm p=¡10N/mm quart de l'anneau.

Fichier

Bibliothµeque

Ossature plane

6RDM { Ossatures

E= 200000MPa ,º= 0:3

Sections droites

Cas de charges

Calculer

Paramµetres

Modµele de Timoshenko

Calculer

Analyse statique

v

1=(6¼2+ 17¼¡6)pR4

24(2 +¼)EIz+¼ pR2

4EA+(2 +¼)pR2

4GAky =¡0:324026¡0:000982¡0:005013 =¡0:330021mm u

3=(¼¡14)pR4

6(2 +¼)EIz+pR2

2EA¡pR2

2GAky = 0:131992¡0:000625 + 0:001950 = 0:133317mm

Actions de liaisons:

F

1x= 0; M1z=(14 + 3¼)pR2

6(2 +¼)=¡18983N.mm

F

3y=¡pR= 500N; M3z=(2 + 3¼)pR2

3(2 +¼)=¡18567N.mm

Mf z2=¡4pR2

3(2 +¼)= 6483N.mm

Contraintes normales:

a b¾ =¨(14 + 3¼)pR2 (2 +¼)c3=§113:90MPa c d¾ =pR c

2¨2(2 + 3¼)pR2

(2 +¼)c3=½106:10

¡116:10MPa

Manuel d'exercices7

v

1=¡0:329765mm; u3= 0:133290mm

Actions de liaison:

F

1x= 0N; M1z=¡18977N.mm; F3y= 500N; M3z=¡18523N.mm

Contraintes normales:

a= 113:86MPa; ¾b=¡113:86MPa; ¾c= 106:14MPa; ¾d=¡116:14MPa

Remarque:

Avec le module RDM {

obtient : v

1=¡0:328065mmu3= 0:133370mm

a= 113:96MPa; ¾b=¡113:96MPa; ¾c= 99:66MPa; ¾d=¡124:20MPa 3 ] donne : c= 99:10MPa; ¾d=¡124:00MPa

8RDM { Ossatures

Exemple 4 : Plancher

1990, pages 342-345.

Problµeme:

Le n¾ud 2 porte une force de composantes(0;0;50)kN et un couple de comosantes(0;100;0)kN.m. La poutre1¡2porte en son milieu une force ponctuelle de composantes(0;0;¡150)kN. (0;0;¡75)kN/m.

On donne :

L= 2m module de Young = 200000 MPa , coe±cient de Poisson = 0.25 aire = 10

2cm2, constante de torsion de Saint VenantJ= 2105cm4,IZ= 105cm4

P= 5000daN

Manuel d'exercices9

Poutres

Sections droites

Section quelconque

Aire = 100 cm

2

Constante de torsion de Saint Venant :J= 2E5 cm4

Moment quadratique :IZ= 1E5 cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une forceFz= 50kN

Le n¾ud 2 porte un coupleMy= 100kN.m

Module de Young = 200000 MPa , coe±cient de Poisson = 0.25

Calculer

Analyse statique

w

2=¡1:2182mm; µ2x=¡0:35599 10¡3rad; µ2y=¡0:14976 10¡3rad

w

4=¡2:0993mm; µ4x= 0:28856 10¡3rad; µ4y= 0:18376 10¡3rad

Actions de liaison:

F

1z= 93:528kN; M1x= 9:493kN.m; M1y=¡163:092kN.m

F

3z= 34:452kN; M3x= 14:240kN.m; M3y= 76:393kN.m

F

5z= 214:940kN; M5x=¡11:543kN.m; M5y=¡239:068kN.m

F

6z= 57:080kN; M6x=¡128:588kN.m; M6y=¡7:351kN.m

10RDM { Ossatures

Exemple 5 : Ossature spatiale

Problµeme:

des rectangles pleins. n¾ud x(m) y(m) z(m) 1 0 0 0 2 0 0 4 3 0 8 4 4 0 11 4 5 3 8 4 6 3 8 0

Le n¾ud 4 porte une force

~Fde composantes(0;0;¡1000)daN .

Manuel d'exercices11

Poutres

Module de Young = 100000 MPa , coe±cient de Poisson = 0.2987

Sections droites

Changer les poutres3¡5et5¡6de groupe

Rectangle plein :600£300mm

Rectangle plein :500£300mm

Rectangle plein :800£300mm

Repµere local

Modi¯er le repµere local de la poutre1¡2(angle = 90º)

Liaisons

Cas de charges

Le n¾ud 4 porte une charge de composantes(0;0;¡1000)daNquotesdbs_dbs35.pdfusesText_40
[PDF] flexion simple définition

[PDF] contrainte de flexion

[PDF] cours rdm

[PDF] toute la finance d'entreprise en pratique pdf

[PDF] finance pour les nuls pdf gratuit

[PDF] les bases de la finance pdf

[PDF] la finance d'entreprise pour les nuls

[PDF] mémoire analyse financière d'une entreprise pdf

[PDF] comptabilité financière et comptabilité de gestion

[PDF] mots croises solution

[PDF] mots croisés ? imprimer

[PDF] mots croises gratuits force 3

[PDF] mots croisés dictionnaire

[PDF] mots croisés gratuit

[PDF] mots croisés aide