[PDF] Méthodes numériques de résolution déquations différentielles





Previous PDF Next PDF



RÉSOLUTION DÉQUATIONS À LAIDE DEXCEL

constaterez dans l'illustration suivante



Annexe C : Matrices déterminants et systèmes déquations linéaires

la matrice A des coefficients dans laquelle on a remplacé la ième colonne par la matrice des constantes. La résolution du système par la méthode de Cramer



RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

La solution d'un système est l'ensemble des valeurs que peuvent prendre les variables et de sorte que les deux équations sont satisfaites simultanément. Exemple.



Chapitre III : Résolutions déquations sur R

résolutions d'équations et systèmes d'équations. Résoudre une équation veut dire en déterminer toutes les solutions dans un ensemble de nombres donnés. Nous.



SECOND DEGRE (Partie 2)

I. Résolution d'une équation du second degré Une solution de cette équation s'appelle une racine du trinôme ax2 + bx + c . Exemple :.



Résolution des équations différentielles linéaires du second ordre `a

1 Position du probl`eme. 1.1 L'équation avec second membre. 1.1 Définition. Soit g une fonction continue définie sur un intervalle I.



ÉQUATIONS INÉQUATIONS

Une équation est composée de deux membres séparés par un signe « = ». Exemple : 11 ? 7 = . 1er membre Résolution d'équations. 1) Introduction.



Méthodes numériques de résolution déquations différentielles

Méthodes numériques de résolution d'équations Equation du mouvement : ... On s'intéresse aux équations différentielles du premier ordre de la forme.



Résolution déquations quadratiques à une variable

Définition d'une équation quadratique. ? Résolution d'une équation quadratique à une variable. ? Parabole et résolution d'une équation quadratique.



EQUATIONS DIFFERENTIELLES I Définition et notation

Méthode générale de résolution. • L'équation s'écrit : y'g(y) = f(x) avec f et g deux fonctions d'une variable. • Si on connait une primitive G de g 

M ethodes numeriques de resolutiond'equations differentielles

1 Motivation

1.1 Quelques exemples de problemes dierentiels

Modele malthusien de croissance de population

Modelisation de l'evolution d'une population \fermee" {P(t) : taille de la population a l'instant tt {P0(t) : variations de la taille de la population

On supp oseque les nom bresde naissances et de d ecesson tprop ortionnels ala taille de la p opulation,

avec un taux de nataliteet un taux de mortalite. P

0(t) =P(t)P(t) = ()P(t)

T ailleinitiale de la p opulation: P(t0) =P0

Solution

P(t) =P0exp(()(tt0)):

Modele dit \de croissance logistique"

Ajout d'un terme de competition entre les individus (P0(t) =aP(t)bP(t)2

P(0) =P0

ßEquation dierentielle non lineaire

Calcul de la solution par separation des variables P

0(t)aP(t)bP(t)2= 1

1aPbP2=1=aP

+b=aabP=)P0aPbP2=1a P0P +bP0abP Z P0P =h lnjPji etZbP0abP=h lnjabPji

Solution obtenue

P(t) =aP0bP

0+ (abP0)ea(tt0)

1

Pendule pesant non amorti

O l(t)M{P endulede masse m, suspendu enO

Fil ( OM) non pesant et de longueurl.

(t) : position par rapport a la position d'equilibre (angle signe).

Mouvement du pendule gouverne par la

loi fondamentale de la dynamique.

Equation du mouvement :

(t) est solution du probleme dierentiel : 8<

00(t) =gl

sin((t)) (0) =0; 0(0) = 0 (par exemple)

ßequation dierentielle d'ordre 2 non lineaire

Pendule pesant non amorti : transformation

(t) est solution du probleme dierentiel : (00(t) =!2sin((t)) (0) =0; 0(0) = 0 par exemple

Posons :x(t) =(t),y(t) =0(t) etY(t) = x(t)

y(t)!

On a alors

Y

0(t) = x0(t)

y 0(t)! = 0(t)

00(t)!

= 0(t) !2sin((t))! = y(t) !2sin(x(t))!

Pendule pesant non amorti : transformation

Y(t) = (t)

0(t)! est solution du probleme dierentiel :

Y0(t) =F(t;Y(t))

Y(0) =Y0

avec F t; x y! = y !2sin(x)! et Y 0= 0 0! 2

1.2 Forme generale d'une equation dierentielle

Equation dierentielle, probleme de Cauchy

On s'in teresseaux equationsdi erentiellesdu premier ordre de la forme y

0(t) =F(t;y(t))

avecF:IRp!Rp(I, intervalle deR) une fonction continue. Si p >1, il s'agit en pratique d'un systeme dierentiel.

Le probl emea vecconditi oninitiale est app ele

pr oblemede Cauc hy (y0(t) =F(t;y(t)) y(t0) =y0; t02I,y02Rp;

Notion de solution

Probleme de Cauchy

(y0(t) =F(t;y(t)) y(t0) =y0; t02I,y02Rp;

Solution

Une solution du p roblemede Cauc hy est la donn eed'un in tervalle ~Iet d'une fonction'2 C1(~I;Rp) tels que {t02~I,~II, {'0(t) =F(t;'(t))8t2~I, {'(t0) =y0.

Remarque

On utilise souvent la m^eme notation pour l'inconnue dans l'equationyet la solution', noteey...

1.3 Un resultat theorique fondamental

Le theoreme de Cauchy-LipschitzTheoreme

Considerons le probleme de Cauchy :

()(y0(t) =F(t;y(t)) y(t0) =y0; t02I,y02Rp; avecF: (t;y)2IRp!F(t;y)2Rp. Supposons que {Fest continue surIRp, {Fest lipschitzienne eny, uniformement ent: il existeL >0 telle que

8t2I;8y1;y22 VRpy0jjF(t;y1)F(t;y2)jj Ljjy1y2jj:

Alors, le probleme de Cauchy () possede une unique solution. Cette solution est denie sur un intervalle

contenantt0.3

Et le calcul eectif de la solution?

Mo delemalth usien: OK

equa di lineaire d'ordre 1 a coes constants

Mo delede c roissancelogistique : OK

equa di d'ordre 1, non lineaire mais a variables separables

P endulep esant?

(Y0(t) =F(t;Y(t))

Y(0) =Y0avecF(t; x

y! ) = y !2sin(x)!

ßIl s'agit d'un systeme dierentiel 22.

ßLe systeme est bien d'ordre 1... mais il est non lineaire.

Calcul numerique d'une solution approchee

Pas d'expression explicite de la solution

Calcul numerique d'une solution approchee0123456-1.5 -1 -0.5 0 0.5 1 1.5 temps t q(t)2 Mise au point de methodes numeriques et convergence

2.1 Principe

But

On suppose que le probleme de Cauchy

(y0(t) =F(t;y(t)) y(t0) =y0; t02R,y02Rp; admet une unique solutionydenie surI= [t0;t0+T]. 4

Subdivision de l'intervalle de temps

t 0t 1t nt n+1t

N=t0+Ttn=tn+1tn;t= max0nNtn:

L'objectif est de calculer des valeurs (Yn)0nN, qui soient de \bonnes" approximations de (y(tn))0nN.

Lien avec l'integration numerique

Integration de l'equation

Z tn+1 t ny0(t)= F(t;y(t)) y(tn+1)y(tn) =Z tn+1 t nF(t;y(t))dt

Approximation

{y(tn+1)y(tn)ßYn+1Yn {Z tn+1 t nF(t;y(t))dtßFormule de quadrature :

RAG(tn+1tn)F(tn;y(tn))

RAD(tn+1tn)F(tn+1;y(tn+1))

Trapezes(tn+1tn)F(tn;y(tn)) +F(tn+1;y(tn+1))2

Methodes numeriques correspondantes

Methode d'Euler expliciteÞschema explicite

Yn+1=Yn+ (tn+1tn)F(tn;Yn)

Y 0=y0

Methode d'Euler impliciteÞschema implicite

Yn+1=Yn+ (tn+1tn)F(tn+1;Yn+1)

Y 0=y0

Methode de Crank-NicolsonÞschema implicite

Y n+1=Yn+ (tn+1tn)F(tn;Yn) +F(tn+1;Yn+1)2 Y0=y0 5

2.2 Notion de convergence

Introduction des notions d'erreur locale/erreur globale{y(t) solution exacte de l'equation dierentielle,

( Yn)0nNvaleurs donnees par le schema numerique Þyappreconstruction d'une solution approchee ane par mx

Erreur localeen=y(tn)Yn

Erreur globaleE(t) = max0nNjenj(!:Ndepend de t)

Denition de la convergenceLa methode numerique est ditecon vergentesi

E(t) = max0nNjenj !0:

t!0 6

2.3 Convergence de la methode d'Euler explicite

Erreur de consistance

Probleme de Cauchy

y0(t) =F(t;y(t)) y(t0) =y0

ßsolution exacte :yMethode d'Euler explicite

Yn+1=Yn+ tF(tn;Yn)

Y 0=y0

ßschema numerique : (Yn)

Denition

L' erreur de consistance (locale) al'instan tnest denie comme l'erreur commise par la solution exacte dans le schema numerique : n=y(tn+1)y(tn)tF(tn;y(tn)):

Estimation de l'erreur de consistance

Probleme de Cauchy

y0(t) =F(t;y(t)) y(t0) =y0Methode d'Euler explicite

Yn+1=Yn+ tF(tn;Yn)

Y 0=y0 ßon suppose que la solution exacte veriey2 C2([t0;t0+T]|{z} I;R) n=y(tn+1)y(tn)tF(tn;y(tn)) Mais, {y(tn+1) =y(tn) + ty0(tn) +t22 y00(n) {y0(tn) =F(tn;y(tn)) D'ou, n=t22 y00(n):quotesdbs_dbs46.pdfusesText_46
[PDF] La résolution d'équation - CNED

[PDF] La résolution d'une équation

[PDF] la résolution de problème du premier degré

[PDF] La resolution de problèmes

[PDF] la résolution spatiale des images des satellite

[PDF] La respiration - SVT

[PDF] La respiration cellulaire

[PDF] la respiration cellulaire cours

[PDF] La respiration d'un triton: objectif: explorer les resultas expérimentaux

[PDF] la respiration de la grenouille URGENT !!!!

[PDF] la respiration de la larve de moustique URGENT !!!!

[PDF] la respiration définition

[PDF] la respiration des levures

[PDF] la respiration des plantes

[PDF] la respiration des plantes pdf