[PDF] Coefficient de partage On considère le partage





Previous PDF Next PDF



Objectifs : Modéliser le mécanisme dextraction de la caféine par un

La caféine du café est dissoute dans le solvant organique généralement un solvant chloré. (chloroforme



Polycopié du Cours: Techniques dextraction de purification et de

1) Solvants organiques. 2) Types d'extraction (solvant aqueuse



Ce document est le fruit dun long travail approuvé par le jury de

EXTRACTION IDENTIFICATION ET CARACTERISATION. DES MOLECULES BIOACTIVES DE LA GRAINE ET DE. L'HUILE DE SILYBUM MARIANUM. ETUDE DE LEURS. ACTIVITES ANTIOXYDANTE 



Contribution à létude de loptimisation de lextraction solide-liquide

Figure 1: Schéma des différents modes d'extraction en fonction de la les solvants organiques (hexane heptane



Coefficient de partage

On considère le partage d'un soluté entre l'eau et un solvant non miscible. (hexane éther



TECHNIQUE: Extraction liquide-liquide

L'extraction est d'autant plus efficace que la substance à extraire est plus soluble dans le solvant d'extraction que dans son solvant original. ? Les produits 



IV. Quelques techniques de base

Initialement on a une quantité n0 de A à extraire. L'extraction n°1 extrait ??n0 et il reste n1 = (1- ?) n0 de A dans la phase organique.



Remplacement du dichlorométhane comme solvant dextraction et

De nombreux collègues utilisent le dichlorométhane dans ces deux rôles mais il est répertorié 4. extraction de la caféine dans des boissons



Lintoxication à la paraphénylène-diamine au Maroc

La PPD serait respon- sable de la lyse musculaire par le biais d'une surcharge calcique. Ce mécanisme est décrit avec d'autres intoxications comme la caféine 



Exercices supplémentaires de la séquence 16 Séparation et

EXERCICE 11 : Extraction de la caféine Récupérer la phase organique et répéter l'extraction. ... Quel est le rôle du sulfate de magnésium anhydre ?

Coefficient de partage

1 Définition

On considère le partage d"un soluté entre l"eau et un solvantnon miscible (hexane, éther, chloroforme, octanol...) Le coefficient de partagePest égal au rapport des concentrations du soluté dans les deux phases : P=C? C CC" Eau (saturée de solvant)Solvant (saturé d"eau) •C?> C?P >1?logP >0: le soluté est ditlipophile(hydrophobe) •C?< C?P <1?logP <0: le soluté est dithydrophile

2 Application à l"extraction

SoitVetV?les volumes respectifs de la phase aqueuse et de la phase organique. SoitC0la concentration du soluté dans la phase aqueuse avant extraction. 1 Ecrivons la conservation du nombre de moles de soluté : C

0V=CV+C?V?

Or,P=C?/C, d"oùC=C?/P:

C 0V=C?

PV+C?V?=C??VP+V??

D"où la concentration du soluté dans la phase organique après extraction : C ?=C0V V P+V?

Le nombre de moles de soluté extraites est :

n ?=C?V?=C0V V

V?1P+ 1=n0

V

V?1P+ 1

oùn0désigne le nombre de moles du soluté dans la phase aqueuse avant extraction.

On en déduit le rendement de l"extraction :

R=n? n0=1V

V?1P+ 1

Ce rendement augmente :

- lorsque le coefficient de partage augmente (1/P?) - lorsque le volume de solvant augmente ( V V??)

3 Influence du pH

3.1 Introduction

Nous étudierons dans ce paragraphe la distribution d"un soluté ionisable, tel qu"un acide faible ou une base faible, entre l"eau et un solvant non miscible. Afin de simplifier les calculs, nous ferons les deux hypothèses suivantes :

1. seule la forme neutre du composé peut passer dans la phase organique;

2. il n"y a pas de dissociation en phase organique.

Nous envisagerons successivement les cas d"un acide faible, d"une base faible et d"un ampholyte. 2

3.2 Acide faible3.2.1 Coefficient de distribution

AH

AH??A-+ H+

Solution tamponSolvant

On définit le coefficient de partagePet le coefficient de distributionD:

P=[AH]?

[AH]D=[AH]?[AH] + [A-]=P1 +[A-][AH] (le signe " désigne les concentrations dans la phase organique)

Pest constant alors queDest fonction du pH.

3.2.2 Influence du pH

Exprimons la constante d"acidité de l"acide faible : K a=[A-][H+] [AH]?[A-][AH]=Ka[H+] d"où : D=P

1 +Ka[H+]=P1 + 10pH-pKa

La représentation graphique (exemple avecP= 1etpKa= 5) montre que l"extraction est favorisée lorsque le pH est inférieur aupKa(prédominance de la forme neutre). 3

2345678

pH 0 0.5 1D

3.3 Base faible

3.3.1 Coefficient de distribution

B

B + H+??BH+

Solution tamponSolvant

P=[B]?

[B]D=[B]?[B] + [BH+]=P1 +[BH+][B] 4

3.3.2 Influence du pH

Ecrivons la constante d"acidité :

K a=[B][H+] [BH+]?[BH+][B]=[H+]Ka soit : D=P

1 +[H+]Ka=P1 + 10pKa-pH

L"extraction est maximale lorsque le pH est supérieur aupKa(prédomi- nance de la forme neutre B). La figure suivante montre un exemple avecpKa= 8etP= 1:

567891011

pH 0 0.5 1D

3.4 Ampholyte

3.4.1 Equilibres en solution

Considérons l"exemple de la glycineH2N-CH2-COOH: 5 +H3N-CH2-COO-H

2N-CH2-COO-+H3N-CH2-COOHH

2N-CH2-COOH

Dans le cas général, en représentant parHX0la forme neutre de l"am- pholyte, le schéma devient : HX ±X -H2X+HX 0 k01 k±1 k02 k±2 kz •k01etk02représentent les constantes d"acidité de la forme neutre : k

01=[X-][H+]

[HX0]k02=[HX0][H+][H2X+] •k±1etk±2représentent les constantes d"acidité du zwitterion (amphion) : k

±1=[X-][H+]

[HX±]k±2=[HX±][H+][H2X+] •kzreprésente la constante de formation du zwitterion à partirde la forme neutre : k z=[HX±] [HX0] 6 Ces constantes ne sont pas indépendantes. On a en effet les deux relations : k z=k01 k±1=k±2k02 Il suffit donc de trois constantes pour déterminer la concentration des différentes espèces.

3.4.2 Calcul du coefficient de distribution

Prenons par exemplek01,k02etkzet exprimons toutes les concentrations en fonction de celle de la forme neutre : k

01=[X-][H+]

[HX0]?[X-] =k01[H+][HX0] k

02=[HX0][H+]

[H2X+]?[H2X+] =[H+]k02[HX0] k z=[HX±] [HX0]?[HX±] =kz[HX0]

Si seule la forme neutre passe dans le solvant :

D=[HX0]?

[HX0] + [X-] + [H2X+] + [HX±] D=P

1 +k01[H+]+[H+]k02+kz=P1 + 10pH-pk01+ 10pk02-pH+kz

Les figures suivantes montrent deux exemples :

1.pk01= 4,pk02= 8,P= 1. De haut en bas :kz= 0,50,200,1000

2.pk01= 8,pk02= 4,P= 1. De haut en bas :kz= 0,1,5,10

7

024681012

pH 0 0.001 0.002 0.003 0.004

0.005D

024681012

pH 0 0.2 0.4 0.6 0.8 1D 8 D"après ces représentations graphiques on constate que :

1. l"extraction est maximale au pH isoélectrique (pHi=1

2(pk01+pk02));

2. l"extraction est d"autant plus importante que les fonctions acide et ba-

sique sont plus faibles (pk01?etpk02?);

3. l"extraction est d"autant plus importante qu"il y a peu dezwitterion

(kz?).

3.4.3 Détermination expérimentale des constantes

La potentiométrie ne distingue pas la molécule neutre et le zwitterion : K a1Ka2 X -??(HX0,HX±)??H2X+ Les constantes d"acidité déterminées par potentiométrie sont donc telles que : K a1=[X-][H+] [HX0] + [HX±]=k 01 [H+][HX0][H+] [HX0](1 +kz)=k011 +kz K a2=([HX0] + [HX±])[H+] [H2X+]=[HX0](1 +kz)[H+][H+] k02[HX0]=k02(1 +kz) pK a1=pk01+ log(1 +kz)> pk01 pK a2=pk02-log(1 +kz)< pk02 Les pK apparents sont donc différents des pk réels, ceci d"autant plus que la formation du zwitterion est importante. Pour accéder auxpk réels il faut déterminerkz, ce qui peut parfois se faire par spectrophotométrie si la forme neutre et le zwitterion ont des spectres d"absorption différents. 9

4 Calcul du coefficient de partage4.1 Equation d"Abraham4.1.1 Introduction

L"équation d"Abraham permet d"exprimer lelogPà partir d"un ensemble de paramètres caractéristiques du soluté : - Volume moléculaire (favorise la lipophilie) - Acidité et basicité par liaison hydrogène (favorisent l"hydrophilie) - Polarité et polarisabilité (favorisent l"hydrophilie)

4.1.2 Volume moléculaire

L"augmentation de volume du soluté favorise le passage dansla phase organique, donc la lipophilie. En effet : - les molécules d"eau sont fortement liées par liaisons hydrogène; l"in- troduction du soluté entraîne la destruction d"un nombre deliaisons H d"autant plus important que le soluté est volumineux; ce phénomène requiert de l"énergie, il est donc défavorisé. - les molécules du solvant organique sont beaucoup moins liées : l"intro- duction du soluté y est donc plus facile.

4.1.3 Liaisons hydrogène

La liaison hydrogène peut être considérée comme une sorte deréaction acide-base :

Exemple: Alcool (R-OH) en solution dans l"eau :

H

2O···H-O-R

Base Acide

HO-H···O-R

H

Acide Base

On définit donc :

•l"acidité par liaison hydrogène = Hydrogen Bond Acidity = HBA •la basicité par liaison hydrogène = Hydrogen Bond Basicity =HBB Le soluté sera donc d"autant plus hydrophile qu"il aura de fortes valeurs de HBA ou HBB 10

4.1.4 Polarité / Polarisabilité

Ces propriétés interviennent dans la formation des liaisons de Van der Waals entre le solvant et le soluté. Ces liaisons sont favorisées dans l"eau, qui est plus polaire. Le soluté sera donc d"autant plus hydrophile qu"il sera plus polaire et/ou plus polarisable.

4.1.5 Synthèse : Equation d"Abraham

•Les lettres majuscules désignent les propriétés du soluté :

V: volume moléculaire (ml/mol/100)

S: polarité/polarisabilité

A: acidité par liaison hydrogène

B: basicité par liaison hydrogène

E: excès de réfraction molaire (ml/mol/10) (dépend deVetS) •Les lettres minuscules désignent les propriétés du solvantpar rapport à l"eau: v: intensité des liaisons intermoléculaires (vvarie en sens inverse) s: polarité/polarisabilité a: basicité par liaison hydrogène b: acidité par liaison hydrogène e: influence combinée devets

4.1.6 Exemples

•Système octanol/eau :

logP= 3,81·V-1,05·S+ 0,034·A-3,46·B+ 0,56·E+ 0,09 - le volume moléculaire (V) est le principal facteur favorisant la lipo- philie; - la basicité par liaison hydrogène (B) et (à un moindre degré) la po- larité/polarisabilité (S) sont les deux principaux facteurs favorisant l"hydrophilie.

•Système cyclohexane/eau :

logP= 4,65·V-1,73·S-3,78·A-4,91·B+ 0,82·E+ 0,13 On retrouve l"influence des paramètresV,BetS, qui est plus impor- tante qu"avec l"octanol, et l"influence supplémentaire de l"acidité par liaison hydrogène (A) qui favorise l"hydrophilie. 11 Les 2 solvants peuvent être classés sur des échelles où l"eaupossède tou- jours la valeur 0 (les valeurs du cyclohexane sont en italique) : a basicité par L. H

0,034 -

-3,78-b acidité par L. H -3,46 - -4,91-s polarité polarisabilité -1,05 - -1,73- 0Eau

4.1.7 Autres applications

L"équation d"Abraham s"applique à de nombreux phénomènes où inter- vient le partage d"un soluté entre deux milieux de propriétés différentes.

Exemples :

•Chromatographie

oùk?désigne le facteur de capacité. Les coefficientsv,a,b,e,sdépendent de la nature des phases.

•Interactions biologiques

Exemple : Liaison enzyme-substrat

log(1/Kd) =v·V+a·A+b·B+e·E+s·S+c oùKddésigne la constante de dissociation du complexe enzyme-substrat. 12

4.2 Méthode de Hansch et Leo4.2.1 Paramètreπde Hansch

Le paramètreπde Hansch est défini pour les substituants du benzène :

π(X) = logP(C6H5-X)-logP(C6H6)

Le tableau suivant donne les valeurs du paramètreπpour quelques sub- stituants (ainsi que les paramètresσetρque nous étudierons plus loin).

Substituantπσρ

F0,140,280

Cl0,710,280

Br0,860,280

I1,120,280

NO2-0,280,600

OH-0,6701,06

SH0,3900,50

NH2-1,2301,08

CHO-0,650,580,44

COOH-0,320,320,35

CONH2-1,490,320,72

OCH3-0,020,170,50

OCOCH3-0,640,170,50

On constate que :

•Les substituants hydrocarbonés ou halogènes sont lipophiles (π >0); •Les substituants contenant des atomes électro-négatifs tels que O ou N sont le plus souvent hydrophiles (π <0).

4.2.2 Application au calcul de log P

Pour un dérivé substitué du benzène on peut calculer log P par: logP= logP(C6H6) + Σπ Exemple :Mésitylène (Triméthyl-1,3,5 benzène) : logP= logP(C6H6) + 3·π(CH3) = 2,13 + 3×0,56 = 3,81 Cette formule n"est valable que lorsqu"il n"y a pas d"interaction électro- nique ou stérique entre les subsituants. Dans le cas contraire, Leo a mis au point un système permettant de calculer des termes correctifs. 13

4.2.3 Effet électronique

Considérons le 4-nitrophénolO2N-C6H4-OH(logPexp. = 1,91)

Le calcul par la formule de Hansch donne :

logP= logP(C6H6)+π(OH)+π(NO2) = 2,13+(-0,67)+(-0,28) = 1,18 Le composé est plus lipophile que prévu. C"est dû à l"effet attracteur de NO

2qui diminue la basicité par liaison hydrogène (HBB) deOH.

On dit que le groupementNO2agit commeinducteur(= attracteur) et que le groupementOHagit commerépondeur. Leo a défini deux paramètresσetρqui caractérisent respectivement la force de l"inducteur et la sensibilité du répondeur, de telle sorte que l"aug- mentation delogPest donnée par :ΔlogP=ρσ

Dans le cas du 4-nitrophénol, on a donc :

logP= logP(C6H6) +π(OH) +π(NO2) +ρ(OH)·σ(NO2) = 2,13 + (-0,67) + (-0,28) + 1,06×0,60 = 1,82

Cas particuliers:

1. Si plusieurs inducteurs agissent sur le même répondeur, la somme des

termesρσest multipliée par un coefficientcfonction du nombre d"in- ducteurs.

Exemple :Dinitro-3,5 phénol

On a deux inducteurs (NO2) agissant sur un même répondeur (OH). dans ce cas le coefficientcvaut 0,75, d"où : logP= logP(C6H6) +π(OH) + 2·π(NO2) +c·2·ρ(OH)·σ(NO2) = 2,13 + (-0,67) + 2×(-0,28) + 0,75×2×1,06×0,60 = 1,85

2. Un substituant peut être à la fois inducteur et répondeur.Il faut alors

additionner les termesρσcorrespondant à toutes les interactions.

Exemple :Acide méthoxy-4 benzoïque

logP= logP(C6H6) +π(COOH) +π(OCH3) +ρ(COOH)·σ(OCH3) +ρ(OCH3)·σ(COOH) = 2,13 + (-0,32) + (-0,02) + 0,35×0,17 + 0,50×0,32 = 2,01 logPexp.=1,96 14

4.2.4 Effet stérique

Lorsqu"un substituant " basique » est lié à un cycle benzènique, la conju- gaison tend à diminuer la basicité, d"où une augmentation dela lipophilie par rapport au composé aliphatique.quotesdbs_dbs46.pdfusesText_46
[PDF] le rôle du choeur dans Antigone

[PDF] le role du citoyen dans la défense nationale

[PDF] le role du comique

[PDF] le role du complexe argilo-humique dans la fertilité du sol

[PDF] le role du dialogue dans un récit

[PDF] le role du maire et du conseil municipal cycle 3

[PDF] le role du marketing

[PDF] le role du placenta

[PDF] le rôle du réseau dans le recrutement

[PDF] le role du roman dissertation

[PDF] le rôle du système d information

[PDF] Le rôle du système nerveux dans la perception de l'environnement

[PDF] Le rôle du système nerveux dans la perception de l'environnement - La perception de l'environnement

[PDF] le role du titre dans un roman

[PDF] le role du valet au theatre,