[PDF] LES SUITES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.



LES SUITES (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 1). I. Raisonnement par récurrence. 1) Le principe.



Cours I : SUITES NUMERIQUES I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels. 1/ Définition. Définition : Une suite un est une application de l'ensemble ? ou une partie de ? dans ? 



LES SUITES

- Si une suite décroissante est non minorée alors elle tend vers ?? . Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTIQUES. ET SUITES GÉOMÉTRIQUES. Tout le cours en vidéo : https://youtu.be/ 



SUITES NUMERIQUES I) Définition dune suite II) Sens de variation

Définition : Lorsqu'une suite est définie par son premier terme et par une relation qui permet de calculer tous les termes successifs de proche en proche on 



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



LES SUITES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 :.



LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DE SUITES. I. Limite d'une suite géométrique. 1) Suite (qn).

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLES SUITES Le raisonnement par récurrence Principe : Si la propriété P est : - vraie au rang n0 (Initialisation), - héréditaire à partir du rang n0 (Hérédité), alors la propriété P est vraie pour tout entier n ≥

n0. Limites Propriétés : - lim n→+∞ n=+∞ lim n→+∞ n 2 lim n→+∞ n=+∞ lim n→+∞ 1 n =0 lim n→+∞ 1 n 2 =0 lim n→+∞ 1 n =0 . Limite d'une somme : lim n→+∞ u n

L L L +∞

lim n→+∞ v n

L' +∞

()lim nn n uv

L + L' +∞

F.I.* Limite d'un produit :

lim n→+∞ u n

L L > 0 L < 0 L > 0 L < 0 +∞

0 lim n→+∞ v n

L' +∞

ou -∞ ()lim nn n uv

L L' +∞

F.I. Limite d'un quotient :

lim n→+∞ u n

L L L > 0 ou +∞

L < 0 ou -∞

L > 0 ou +∞

L < 0 ou -∞

0 +∞

ou -∞ lim n→+∞ v n

L'≠

0 +∞

ou -∞

0 avec

v n >0

0 avec

v n >0

0 avec

v n <0

0 avec

v n <0

0 L' > 0 L' < 0 L' > 0 L' < 0 +∞

ou -∞ lim n→+∞ u n v n L L'

0 +∞

F.I. +∞

F.I. Les quatre formes indéterminées sont, par abus d'écriture : "∞-∞

0×∞

" et " 0 0

". YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSuite géométrique Formule de récurrence :

u n+1 =q×u n

Formule explicite :

u n =u 0 ×q n

Limite d'une suite géométrique : q

-11 lim n→+∞ q n pas de limite 0 1 +∞

Somme des termes d'une suite géométrique :

1+q+q 2 +...+q n 1-q n+1 1-q Limites et comparaison Théorèmes de comparaison : 1) Si, à partir d'un certain rang, u n n et lim n→+∞ u n alors lim n→+∞ v n . 2) Si, à partir d'un certain rang, u n ≥v n et lim n→+∞ u n alors lim n→+∞ v n . Théorème d'encadrement (théorème des gendarmes) : Si, à partir d'un certain rang, u n n n et lim n→+∞ u n =lim n→+∞ w n =L alors lim n→+∞ v n =L

. Suites majorées, minorées, bornées - (un) est majorée s'il existe un réel M tel que pour tout n,

u n . - (un) est minorée s'il existe un réel m tel que pour tout n, u n ≥m

. - (un) est bornée si elle est à la fois majorée et minorée. Théorème de convergence monotone : - Si une suite croissante est majorée alors elle est convergente. - Si une suite décroissante est minorée alors elle est convergente. Corollaire : - Si une suite croissante est non majorée alors elle tend vers +∞

. - Si une suite décroissante est non minorée alors elle tend vers -∞

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frCONTINUITÉ ET DERIVATION Limites Propriétés : -

lim x→+∞ x 2 lim x→-∞ x 2 lim x→+∞ x 3 lim x→-∞ x 3 lim x→+∞ x=+∞ lim x→+∞ 1 x =0 lim x→-∞ 1quotesdbs_dbs46.pdfusesText_46
[PDF] Le suivi des clients

[PDF] le sujet : Bouge le spectateur

[PDF] le sujet arts plastiques

[PDF] Le sujet de mon devoir comporte sur laFonction intervalles développement

[PDF] le Sujet Dissertation

[PDF] le sujet est :même caché je suis visible

[PDF] le sujet est sur le tympon de conque c est pour un controle

[PDF] le sujet est sur une leçon que j'ai pas compris sur la gravitation

[PDF] le sujet et le suivant le front pionnier

[PDF] Le sujet grammatical du verbe

[PDF] Le sujet porte sur une équation mathematiques

[PDF] Le sujet suivant se porte sur les différences et les problemes de cultures

[PDF] Le sulfate de cuivre vert

[PDF] Le super pouvoir !

[PDF] le superlatif exercices