[PDF] Chapitre 2 – Proportionnalité dans le triangle





Previous PDF Next PDF



Présentation du Triangle

Le Triangle est dans le quartier du Blosne à Rennes Le Triangle aide les artistes à montrer leurs spectacles au public. • Le Triangle accueille des ...



ANGLES DANS LE TRIANGLE

1) Dans le triangle ABC on connaît déjà deux angles. Leur somme est égale à : 50 + 65 = 115 °. La somme des mesures des angles d'un triangle est égale à 



Lutin Bazar

Le triangle rectangle. Fiche www.lutinbazar.fr. 1. Marque les angles droits des triangles rectangles. Observe ces deux polygones et trouve :.



Chapitre n°10 : « Les triangles »

Le sommet C est le sommet principal. • Un triangle rectangle est un triangle qui possède un angle droit. Le côté [ IK ] situé en face de l' 





Rappels : Triangle rectangle

Exemple :ABC est un triangle rectangle en. A. ABC et ACB sont les deux angles aigus complémentaires (leur somme fait 90°). Le côté opposé à l'angle droit 



Chapitre 2 – Proportionnalité dans le triangle

O. A. B. M. N. Page 4. 3- Agrandissement-Réduction. Soit deux triangles semblables et k le quotient des côtés homologues du premier et du second triangle. Si k 



RELATIONS DANS LE TRIANGLE I. LE TRIANGLE Dans un

Effectue le même travail sur les 3 autres triangles ci-dessous en calculant ensuite la somme des valeurs des trois angles. On retrouve un résultat connu: "Dans 



GÉOMÉTRIE DU TRIANGLE (Partie 1)

Comme la plus grande longueur est égale à la somme des deux autres longueurs il n'est pas possible de construire un triangle ABC avec ces mesures. Mais on peut 



DEFINITION le triangle quelconque le triangle rectangle le triangle

Les triangles. DEFINITION le triangle quelconque. - C'est une figure géométrique plane fermée. - Elle possède 3 côtés. - Elle possède 3 sommets.

Chapitre 2 - Proportionnalité dans le triangle

1- Théorème de Thalès

a) Propriété directe On considère deux droites ( d ) et ( d' ) sécantes en O. Soit deux points A et M sur ( d ) et deux points B et N sur ( d' ) tous distincts de O.

Si ( MN ) // ( AB ) alors : OM

OA=ON

OB Autrement dit : deux droites parallèles découpent deux droites sécantes dans des dimensions proportionnelles.

On a alors les trois configurations ci-dessous.

b) Conséquence

Avec les conditions précédentes, on déduit que les dimensions du triangle OMN sont proportionnelles à celles

du triangle OAB, autrement dit que OMN est une réduction ou un agrandissement de OAB. Par conséquent : si ( MN ) // ( AB ) alors : OM OA=ON OB=MN

AB Démonstration

* Pour les deux premières configurations, voir le cours de quatrième.

* Pour la dernière configuration, il suffit de considérer les symétriques de M et N par rapport à O pour retrouver

la première ou la deuxième configuration et les égalités de rapports, la symétrie conservant les longueurs.

Remarque

Si deux des rapportsOM

OA,ON OB,MN ABsont différents alors ( MN ) et ( AB ) ne sont pas parallèles.

En effet, si ces droites étaient parallèles, d'après la propriété de Thalès, les rapports seraient égaux.( d )( d' )

O M AN

B( d )( d' )

O

AB( d )( d' )

O ABMM NN c) Propriété réciproque

On considère un triangle OAB.

Soit deux points M et N tels que O, M, A soient alignés dans le même ordre que O, N, B. SiOM OA=ON

OB alors : ( MN ) // ( AB ).

Démonstration

On considère un triangle OAB. Soit deux points M et N tels que : O, M, A sont alignés dans le même ordre que O, N, B et OM OA=ON

OB On va démontrer la propriété dans le cas où les points M et N sont sur [ OA ] et [ OB ] respectivement.

Elle se démontre de manière analogue dans les autres cas. Considérons la parallèle à ( AB ) passant par M : elle coupe [ OB ] en P.

D'après la proprété de Thalès : OM

OA=OP

OB. On en déduit donc que : ON

OB=OP

OBpuis que : ON = OP.

Les points P et N sont donc tous les deux sur un même cercle de centre O. Mais ils sont tous deux également sur le segment [ OB ]. Or, ce cercle et ce segment ne peuvent avoir qu'un point en commun.

On en déduit que N et P sont confondus donc que N est sur la parallèle à ( AB ) passant par M et enfin

que ( AB ) et ( MN ) sont parallèles.

Remarques

* La propriété réciproque de Thalès permet de démontrer que des droites sont parallèles ;

elle ne permet en aucun cas de démontrer que des droites ne sont pas parallèles ! * La condition d'ordre dans l'alignement est indispensable comme le montre l'exemple ci-dessous. OAB est un triangle et les points O, M, A sont alignés, de même que les points O, N, B.

D'une part : OM

OA=2 6=1 3

D'autre part :

ON OB=1

3 On a donc bien : OM

OA=ON OB Pourtant ( MN ) et ( AB ) ne sont pas parallèles * Le troisième rapport (issu de la conséquence) ne permet pas d'établir le parallélisme. En effet pour la configuration ci-contre, on a : OM OA=MN AB.

Mais on a donc aussi :

OM OA=MP

ABcar MP = MN.

Pourtant, les droites ( MP ) et ( AB ) ne sont pas parallèles. AO

MNP( MN ) // ( AB )

B

2- Triangles semblables

a) Définitions * Deux triangles semblables sont deux triangles qui ont les mêmes mesures d'angle.

* Les côtés opposés aux angles de même mesure de deux triangles semblables sont dit homologues.

* Deux triangles qui ont des côtés de mêmes longueurs sont isométriques ou égaux.

Exemple

Les triangles ABC et DEF sont semblables.

Les côtés [ AB ] et [ DF ] sont homologues, tout comme [ AC ] et [ EF ] ou [ BC ] et [ DE ].

Remarque

Des triangles isométriques sont semblables.

b) Propriétés (admises)

* Si deux triangles semblables ont deux côtés homologues de même mesure, alors ils sont isométriques.

* Si deux triangles sont semblables, alors leurs côtés homologues sont proportionnels.

* Réciproquement, si deux triangles ont des côtés proportionnels, alors ils sont semblables.

Exemple

Pour les triangles ABC et DEF précédents : AB DF= AC EF= BC DE. c) Lien avec le théorème de Thalès

Les triangles obtenus dans les différentes configurations de la propriété de Thalès sont semblables.

Exemple

Si OAB et OMN sont deux triangles tels que : M Î ( OA ) ; N Î ( OB ) ; ( MN ) // ( AB ) , alors OAB et OMN sont semblables.4 cm

5 cmOA

BM N

3- Agrandissement-Réduction

Soit deux triangles semblables et k le quotient des côtés homologues du premier et du second triangle.

Si k < 1 , alors le second triangle est une réduction du premier. Si k > 1 , alors le second triangle est un agrandissement du premier. Si k = 1 , alors les triangles sont isométriques.

Exemple

Pour les triangles ABC et DEF précédents :

* DEF est un agrandissement de ABC de coefficient k =DF

AB=5cm

4cm= 5

4 * ABC est une réduction de DEF de coefficient k' = AB DF= 4cm 5cm= 4

5 Remarque : les coefficients k et k' sont inverses.

Effet d'un agrandissement ou d'une réduction sur les grandeurs géométriques

Propriété (admise)

Dans un agrandissement ou une réduction de coefficient k : * les mesures d'angle sont inchangées ; * les longueurs sont multipliées par k ; * les aires sont multipliées par k ² ; * les volumes sont multipliés par k ³.

Exemples

1- Dans le plan

KLP est un agrandissement de RST de rapport k = 2. ^PLK = ^TSR = 45°. * KL = k l RS = 2 l 5 cm = 10 cm * Aire(KLP) = k² l Aire(RST) = 2² l 12,5 cm² = 50 cm²2- Extension dans l'espace (en 3D)

Si on coupe une pyramide SABCD par un plan

parallèle à sa base, on obtient une pyramide réduite SA'B'C'D'. Soit k le coefficient de réduction. k = SA' SA= SB' SB= SC' SC= SD' SD= SH'

SH Si V = 40 cm³ et si k = 0,5 :

V' = k3 l V = (0,5)3 l 40 cm³ = 5 cm³ Aire(RST) = 12,5 cm²45° 5 cm

ABCDA'B'C'D'S

HH'Volume(SABCD) = V

Volume(SA'B'C'D') = V'

quotesdbs_dbs46.pdfusesText_46
[PDF] le triangle de sierpinski dm

[PDF] le triangle de sierpinski exercice corrigé 5eme

[PDF] Le triangle équilatéral

[PDF] Le triangle est-il rectangle

[PDF] le triangle et ces paralleles

[PDF] Le triangle et son périmètre ( exercice très court)

[PDF] Le triangle isocèle

[PDF] Le triangle rectangle

[PDF] Le triangle rectangle AHC

[PDF] Le Triathlon

[PDF] Le tricercle de MOHR

[PDF] le trident

[PDF] le trident de newton

[PDF] Le trinôme

[PDF] Le triomphe de Bel-Ami