[PDF] Determinants of market uptake of innovation in a situation of





Previous PDF Next PDF



LES PILIERS ATTALIDES ET LA TERRASSE PERGAMÉNIENNE A

196. Sur les offrandes royales liées à ces combats voir la synthèse de H. J. Schalles





Telephones in public health policy processes in sub-Saharan Africa

documents were finally included in the final synthesis after a review of the abstract and courage citizens' empowerment on health questions by de-.





BILAN DACTIVITÉ INTERMÉDIAIRE DES SOCIÉTÉS AGRÉÉES

02-Nov-2015 Eco-Emballages et Adelphe ont chacun un agrément de l'Etat d'une durée de 6 ... l'environnement et de l'ADEME les éléments d'actualisation ...



cnrs

15-Feb-2000 En décembre 2001 à l'issue de 20 mois de travail



Le commerce de la Viande déléphant en Afrique Centrale - Rapport

20-Jul-1995 sur les questions controversées relatives à l'éléphant. ... Le commerce de la viande d'éléphant en Afrique Centrale - Rapport de synthèse.



Determinants of market uptake of innovation in a situation of

04-Sept-2018 ajoutées de réflexion les questions et commentaires reçus qui ont ... states that the evidence of the synthesis of a citratestabilized ...



Consulter la Stratégie 3R pour les emballages en plastique à usage

01-Apr-2022 question de nos modes de vie de consommation



Understanding the experiences of schooling of visually impaired

08-Jul-2019 qu'allégé les doutes inhérents au processus de recherche et pour le ... Jacques Wahart

>G A/, i2H@yR3ed38k ?iiTb,ffi?2b2bX?HXb+B2M+2fi2H@yR3ed38k am#KBii2/ QM 9 a2T kyR3

Bb KmHiB@/Bb+BTHBM`v QT2M ++2bb

`+?Bp2 7Q` i?2 /2TQbBi M/ /Bbb2KBMiBQM Q7 b+B@

2MiB}+ `2b2`+? /Q+mK2Mib- r?2i?2` i?2v `2 Tm#@

HBb?2/ Q` MQiX h?2 /Q+mK2Mib Kv +QK2 7`QK

i2+?BM; M/ `2b2`+? BMbiBimiBQMb BM 6`M+2 Q` #`Q/- Q` 7`QK Tm#HB+ Q` T`Bpi2 `2b2`+? +2Mi2`bX /2biBMû2 m /ûT¬i 2i ¨ H /BzmbBQM /2 /Q+mK2Mib b+B2MiB}[m2b /2 MBp2m `2+?2`+?2- Tm#HBûb Qm MQM-

Tm#HB+b Qm T`BpûbX

.2i2`KBMMib Q7 K`F2i mTiF2 Q7 BMMQpiBQM BM bBimiBQM Q7 mM+2`iBMiv #Qmi 2MpB`QMK2MiH M/ ?2Hi? `BbFb, 6`QK "S iQ MMQi2+?MQHQ;v

J`BB PbiT+?mF

hQ +Bi2 i?Bb p2`bBQM, J`BB PbiT+?mFX .2i2`KBMMib Q7 K`F2i mTiF2 Q7 BMMQpiBQM BM bBimiBQM Q7 mM+2`iBMiv #Qmi

2MpB`QMK2MiH M/ ?2Hi? `BbFb, 6`QK "S iQ MMQi2+?MQHQ;vX "mbBM2bb /KBMBbi`iBQMX lMBp2`bBiû

S`Bb b+B2M+2b 2i H2ii`2b- kyRdX 1M;HBb?X LLh, kyRdSaG1.y83X i2H@yR3ed38k Determinants of market uptake of innovation in a situation of uncertainty about environmental and health risks:

From BPA to nanotechnology28.11.2017Mariia OSTAPCHUKClaire AUPLATMme Claire AUPLATUniversité Paris-DauphineM. Albert DAVIDM. Jean-Yves BOTTEROCNRS (émérite)Mme Sylvie LUPTONUniLaSalleMme Myriam MERADUniversité Nice Sophia AntipolisM. Pascal LE MASSONMINES ParisTechM. Mark WIESNERDuke UniversitySciences de gestionDirectrice de thèsePrésident du juryRapporteurRapporteureMembre du jury

i

Remerciements

ses suggestions utiles durant toutes les années de thèse, pour sa disponibilité constante durant cette période, pour ses encouragements dans les moments difficiles. Je veux la

remercier pour sa contribution précieuse à mon travail et son aide. Elle a cru en moi. Sans elle,

finir ma thèse aurait été impossible. Je tiens à remercier Claire Auplat, Jean-Yves Bottero, Albert David, Sylvie Lupton, Pascal Le

rapports préliminaires très intéressants et encourageants. Je remercie également tous les

recherche. Je veux remercier également le jury de pré-soutenance, particulièrement Albert David et Leur expérience et mode de réflexion sont pour beaucoup dans la progression et

Cette thèse est réalisée au sein du Labex SERENADE, dans l'équipe M-Lab du laboratoire DRM

Damart, Emilie Canet, Pierre-Emmanuel Arduin, Mustapha Sali, Béatrice Parguel et Doudja de source de données, et son temps consacré. Je remercie Laurence Rouïl pour son soutien et sa participation dans le comité de suivi de ma ii donné des pistes de réflexions intéressantes, le temps consacré et ses commentaires pour mon travail. De plus, je veux remercier mon tuteur scientifique, Pierre Boucard, pour nos certains sujets et certaines de mes idées. Merci à Simone Schucht pour les corrections de mes papiers de conférence, son aide pour la recherche des données et son soutien moral important. Je remercie Laure Malherbe, Maxime Beauchamp et Vincent Lemaire pour leur disponibilité et leur aide pour la clarification de points particuliers. Je remercie aussi tous les experts du domaine des nanotechnologies et du bisphénol A, interviewés et le temps passé pour avoir rempli mon questionnaire. particulièrement, Vincent Lemaire, Yasmine Saleh, Carmen Cantuarias, Cristiane Stainsack- Brau, Arianna Oddo, Matt Fuller et Jovana Kovacevic. Je remercie Françoise Carbon, Jessica Lafeuille et Florence D'Alexis pour leur aide dans les

organisateurs des conférences et les participants, pour cette expérience et les valeurs

ajoutées de réflexion, les questions et commentaires reçus qui ont contribué à mes réflexions.

En particulier, merci à Michael Dietrich et Francesco Quatraro pour leurs suggestions intéressantes. iii ouvert un autre côté de la vérité de la vie de la thésarde. Je remercie mes parents pour leur compréhension, soutien, affection et compréhension et aide. Merci à mon mari : tu fais ma vie meilleure jour après jour. Je souhaiterais remercier

mon grand-père pour son attitude, son esprit, sa vitalité et sa bonté. Il aime la vie autour de

We gratefully acknowledge that this research is funded by the French National Research Council (ANR) LABEX research grant: SERENADE 11-LABX-0064, coordinated by A*MIDEX ANR-

11-IDEX-0001.

v

Table of Contents

Chapter 1. Background of the thesis ....................................................................................................... 1

1.1. Introduction .................................................................................................................................. 1

1.2. Thesis outline ............................................................................................................................. 13

Chapter 2. Literature review ................................................................................................................. 17

2.1. Definition of innovation ............................................................................................................. 18

2.2. Theoretical perspectives on diffusion of innovation .................................................................. 19

2.2.1. Sociological perspective on diffusion of innovation............................................................ 19

2.2.2. Overview of the Bass model ................................................................................................ 26

2.2.3. Managerial perspective on adoption/rejection of innovation ............................................ 28

2.2.4. Epidemic, rank, order and stock effect models ................................................................... 30

2.3. Literature on international diffusion .......................................................................................... 32

2.3.1. Factors influencing diffusion of innovation at international level ...................................... 33

2.3.2. Key drivers at different stages of the product life cycle at international level ................... 38

2.4. Negative information in Marketing ............................................................................................ 50

2.5. Diffusion of innovation in a situation of uncertainty about environmental and health risks: what

does the literature say? ..................................................................................................................... 51

2.6. Uncertainty about environmental and health risks and new scientific knowledge ................... 54

2.6.1. The nature of uncertainty ................................................................................................... 54

2.6.2. Risk management principles ............................................................................................... 56

2.6.3. The precautionary principle (PP) ......................................................................................... 57

2.6.4. Different interpretations of PP ............................................................................................ 59

2.6.5. Models for the governance of innovation and risk ............................................................. 63

2.6.6. A model of impact for unfortunate events ......................................................................... 66

2.6.7. Information dissemination .................................................................................................. 69

2.6.8. Disagreement between experts and the public (hazard and outrage) ............................... 70

2.6.9. Cultural contexts ................................................................................................................. 71

vi

2.6.10. Conceptive research .......................................................................................................... 73

Chapter 3. Research design and methodology ..................................................................................... 77

3.1. Hypothesis (our main hypothesis) .............................................................................................. 78

3.2. Research approach and epistemological positioning ................................................................. 86

3.3. Data sources and measures for our dependent variables (quantitative studies) ...................... 87

3.4. Conceptual model ...................................................................................................................... 89

3.5. Methods of data analysis (quantitative studies) ........................................................................ 91

3.6. Qualitative study ........................................................................................................................ 93

Chapter 4. Evolution of nanosilver and BPA industries ......................................................................... 99

4.2. Descriptive comparison between the history of BPA and the beginning of history of nanosilver

......................................................................................................................................................... 102

4.2.1. General facts ..................................................................................................................... 102

4.2.2. The regulatory framework ................................................................................................ 109

4.2.3. Responsible development ................................................................................................. 121

4.3.1. Industry self-regulation and voluntary reporting schemes ............................................... 126

4.3.2. Other reactions to new scientific knowledge .................................................................... 128

4.4. NGOs and their activities related to new scientific knowledge ............................................... 130

Chapter 5. Bisphenol A: background information and publications in scientific journals .................. 137

5.1. Research questions .................................................................................................................. 138

5.2. Data collection .......................................................................................................................... 139

5.3. Bisphenol A use ........................................................................................................................ 142

5.4. Bisphenol A in the value chain ................................................................................................. 143

5.5. Bisphenol A: health and environmental concerns ................................................................... 144

5.6. BPA consumption pattern ........................................................................................................ 146

5.7. New scientific knowledge: variable construction .................................................................... 147

Chapter 6. Bisphenol A consumption, economic growth and new scientific knowledge about risk .. 153 vii

6.1. Background information on the Environmental Kuznets Curve............................................... 154

6.2. Hypotheses: impact of economic growth and other factors on BPA consumption ................. 157

..................................................................................................................................................... 157

6.3. Hypotheses: under- and over-consumption of bisphenol A .................................................... 160

6.4. Methodology: bisphenol A modeling ....................................................................................... 162

6.4.1. Reduced form model ......................................................................................................... 163

6.4.2. Extended form model ........................................................................................................ 166

6.4.3. Over- and under-consumption of bisphenol A .................................................................. 168

6.4.4. Policy analysis .................................................................................................................... 169

6.4.5. Data sources ...................................................................................................................... 170

6.5 Results ....................................................................................................................................... 176

6.5.1. Reduced form model ......................................................................................................... 176

6.5.2. Extended form model: additional predictors selection (principal component analysis) .. 177

6.5.3. Over- and under-consumption of bisphenol A: test for endogeneity ............................... 188

6.5.4. Policy analysis .................................................................................................................... 192

6.5.5. Alternative measures of scientific knowledge .................................................................. 195

6.7. Conclusions ............................................................................................................................... 196

Chapter 7. Assessing the influence of economic growth and new scientific knowledge about risk on

polycarbonate consumption in Japan ................................................................................................. 199

7.1. Data and methodology ............................................................................................................. 200

7.1.1. Data ................................................................................................................................... 200

7.1.2. Methodology ..................................................................................................................... 206

7.2. Estimation results ..................................................................................................................... 211

7.3. Conclusions ............................................................................................................................... 224

Chapter 8. Results and discussion ....................................................................................................... 229

8.1. Main results .............................................................................................................................. 229

8.1.1. Question 1. What are the key determinants of international uptake of innovation in a

situation of uncertainty about environmental and health risks?................................................ 229

viii

8.1.2. Question 2. Does the number of risk-related scientific publications impact consumption?

..................................................................................................................................................... 234

8.1.3. Link to the industry life cycle ............................................................................................. 238

8.2. Similarities between bisphenol A and nanosilver .................................................................... 242

8.2.1. Time sequences of diffusion of scientific knowledge related to environmental and health

risks and sources of uncertainty about environmental and health risk of nanosilver and bisphenol

A ................................................................................................................................................... 243

8.2.2. Bisphenol A and nanosilver in the value chains ................................................................ 246

8.2.3. Similarities in the perceived psychological distance ......................................................... 248

8.3. Comparison of sequences of events in the history of BPA and the beginning of history of

nanotechnology (interpretation of results) .................................................................................... 250

8.3.1. Question 3. What is the link between new scientific knowledge and different stakeholders

in a situation of uncertainty about environmental and health risks? ......................................... 250

8.3.2. Activities in response to new scientific knowledge ........................................................... 256

8.3.3. Prescriber in the relationship between an intermediate good and consumers ............... 257

8.3.4. Change levers, new scientific knowledge and consumption ............................................ 261

8.3.5. Disruptive innovation ........................................................................................................ 262

Chapter 9. Conclusions, directions for future investigations and contributions ................................ 265

9.1. Conclusions ............................................................................................................................... 265

9.2. Limitations and further research .............................................................................................. 268

9.2.1. Limitations ......................................................................................................................... 268

9.2.2. Sociological ballistics ......................................................................................................... 269

9.2.3. Threshold models of collective behavior .......................................................................... 271

9.3. Theoretical and methodological contributions, implications for nanosilver and limitations .. 272

9.3.1. Theoretical contribution .................................................................................................... 272

9.3.2. Methodological contributions ........................................................................................... 275

References ........................................................................................................................................... 277

Appendix A. Bass model and its extensions ........................................................................................ 297

Appendix B. Questionnaire ................................................................................................................. 301

ix

Appendix C. Turning points: slowdown and the beginning of decline, by entity ................................ 303

Appendix D. List of contacts ................................................................................................................ 309

Appendix E. Questionnaire about new scientific knowledge and responses ..................................... 311

Appendix F. The list of entities used in the analysis ............................................................................ 323

Appendix G. Bisphenol A consumption ............................................................................................... 325

Appendix H. Polycarbonate sales value .............................................................................................. 337

Appendix I. Mission statement ............................................................................................................ 341

List of Abbreviations ............................................................................................................................ 347

List of Tables ........................................................................................................................................ 353

List of Figures ....................................................................................................................................... 357

Contexte de la thèse ........................................................................................................................ 363

Introduction ................................................................................................................................. 363

Plan de la thèse ........................................................................................................................... 375

Conclusions principales ................................................................................................................... 378

1

Chapter 1. Background of the thesis

Recent advances in analytical and imaging technologies made it possible to manufacture nanomaterials which have led to nanotechnology innovations (Mark R. Wiesner, Lowry, Alvarez, Dionysiou, & Biswas, 2006). Nowadays the physical and chemical properties of nanoparticles can be controlled and adapted for particular applications (Mark R. Wiesner & Bottero, 2007). Uncertainty about environmental and health risks that surrounds nanotechnology raises the questions of innovation success. As the market for nanotechnology expands, managerial interest in understanding the drivers of uptake of nanomaterials grows. Due in part to a lack of consistent data, there is limited empirical literature on determinants of diffusion of nanotechnology. We attempt to address the following general question about the diffusion of innovation: What are the main factors that influence the uptake of innovation in a situation of uncertainty about environmental and health risks? This chapter is organized as follows. First, it establishes the context and importance of our research. Second, we provide our main working hypothesis. Third, this chapter lists the specific research questions and it gives a brief overview of the research structure.

1.1. Introduction

In 2000, the National Nanotechnology Initiative (NNI) was established by President Clinton in the United States of America (USA). The initiative was started with the goal of developing a nanotechnology research, promoting the process for conceiving of new products based on new technologies, training a highly skilled workforce, developing an infrastructure for nanotechnology and advocating responsible nano-development1. The Nanotechnology Research Directions report (IWGN, 1999) had recommended launching this initiative and

1 https://www.nano.gov/about-nni/what/vision-goals, accessed in April 2017

Chapter 1. Background of the thesis

2 providing government funding in the amount of about $500 million dollars (twice as high as in

1999) to support nanotechnology. With the help and support of this initiative more than $23

billion have been invested in nanotechnology since 2001 (National Science and Technology Council Committee on Technology, 2016). In Europe, public funding has increased from Nanotechnology is funded by the European Commission through the Seventh Framework Programme (2007-2013) and Horizon 2020 (2014-2020) (European Commission, 2013). These are some examples of funding of nanotechnology research. In comparison to nanotechnology, billion3. Space research and innovation activities are funded by the European Commission through Horizon 2020 (Reillon, 2015, 2017). What is nanotechnology and why it has been included in research and innovation programs all over the world? is about 1 to 100 nanometers. Just how small is that? A nanometer is one-billionth of a meter. For reference, a sheet of paper is about 100,000 nanometers thick. Nanoscale matter can Technology Council Committee on Technology, 2016, p. 1). There is no agreed definition of nanotechnology. In 2011, the European Commission (Commission recommendation of 18 natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness, the number size distribution threshold of 50 % may be replaced by a nanomaterial (2011/696/EU) imposes no binding legal obligations. The discussion about a definition that can be applied to all regulatory documents is ongoing (Bernard, 2016a).

2 European Union

3 https://europa.eu/european-union/topics/space_en, accessed in April 2017

3 Expected economic impact of nanotechnology is huge. Commercialization of nanotechnology Bozeman, Hardin, & Link, 2008, p. 753). The European Commission highlights the importance of key enabling technologies (KETs) which include nanotechnology to European sustainable growth and its combativeness in world markets. For example, nanotechnology is expected to benefit the following sectors: energy, health care and environment. Nanotechnology was chosen not only because of its economic potential, but also its potential societal impact, its knowledge intensity and a pervasive effect on different types of innovation. Besides, key supposed to have great potential for the exploitation and eventual transformation of the Nanotechnology innovation might help to address issues related to environmental Winans, Pasanen, Werner, & Brand, 2001). It is currently used in various areas: medicine, information technology, energy production and storage, security, food, electronics, etc (European Commission, 2004; Nowack, Krug, & Height, 2011; Pulit-Prociak & Banach, 2016). While cancer is one of the principal causes of death worldwide, a technological innovation is needed to decrease cancer mortality rates. A cancer treatment is one of the research areas of nanotechnology including a cancer diagnosis and it might offer promising solutions to this problem (Gmeiner & Ghosh, 2014). Meanwhile, several working groups on nanotechnology have been established all over the world. For example, the Organisation for Economic Co-operation and Development, OECD established the Working Party on Manufactured Nanomaterials (WPMN) in 2006. OECD prepared guidelines related to exposure to nanomaterials in laboratories and for the testing of nanomaterials over the period of 2008-2009 and published a large quantity of reports related to exposure assessment of nanomaterials in 2016. Numerous international and national workshops, conferences and summer schools related to nanotechnology are also organized all over the world to discuss health and environmental issues related to nanomaterials. Why is there so much attention surrounding health and environmental issues? Nanotechnology has become the subject of considerable debate due to uncertainty about environmental and health risks associated with the production and use of nanotechnology

Chapter 1. Background of the thesis

4 innovations. This uncertainty adds to different uncertainties inherent in every innovation. The uncertainty about environmental and health risks is a consequence of a lack of knowledge on exposure and hazards level. For instance, since the early 2000s, concerns over potential risks from exposure to carbon nanotubes have been raised. Several studies have shown that the States National Institute for Occupational Safety and Health recommended an exposure limit (WHO4 Regional Office for Europe, 2013). At the present time, the exposure level to different nanomaterials is difficult to define as nanomaterials are not often indicated as components (Scientific Committee on Emerging and Newly Identified Health Risks, 2014). Besides, production data (methods, volume and capacity) is rarely disclosed (Hendren, Mesnard, be considered, for example, form and size of particles and their concentration. The occupational exposure to nanomaterials has not been completely examined. Further investigation is required to better understand genotoxicity of nanomaterials (Scientific Committee on Emerging and Newly Identified Health Risks, 2014). Previous experience with Genetically Modified Organisms (GMOs) in food suggests that these types of risk and related uncertainty may lead to the rejection of innovation (Paddock, 2010; Steenis & Fischer, 2016). Besides, some applications of nanomaterials related to food are frequently compared to genetically modified organisms in terms of societal acceptance (Gupta, Fischer, George, & Frewer, 2013)5. This short discussion on pledges and perils related to nanotechnology has led to questions on a capacity for successful diffusion of nanotechnology. What makes diffusion of nanotechnology innovation possible? An exploration of the determinants of adoption and rejection of innovation in a situation of uncertainty about environmental and health risks may help to answer this question. We will see that recent studies have identified some patterns of the diffusion of nanotechnology in a situation of uncertainty, they have not fully explored it. The literature on the diffusion of innovation studies the factors that influence the adoption and diffusion of innovation (Tidd & Bessant, 2013). A large number of different factors have

4 World Health Organization

5 However, certain risks related to genetically modified corps was brought to public attention by nonexperts (Auplat, 2008)

which one of the differences between genetically modified food and nano-food. 5 been identified in the literature (we will discuss them in later chapters). It is not clear whether impact the diffusion of nanomaterials in a situation of uncertainty about environmental and health risks. Previous work on the diffusion of innovation has found, that in most cases, a cumulative number of adopters presented over time results in an S-shaped curve presented in Figure 1 (Rogers, 2003).

Figure 1. S-curve

Source: Reproduced from Rogers (2003)

successful innovation which is first adopted by a few actors, which belongs to innovators category. Then, the number of adopters increases rapidly resulting in a fast rate of growth, but then it continues increasing at a decreasing rate again until the end of process (Rogers,

2003). While it can be assumed that an adoption of nanotechnology follows an S-shaped curve

(Working Party on Nanotechnology Organisation for Economic Co-operation and Development, 2012), what are the reasons for successful diffusion of nanotechnology? This leads to several general questions: what factors influence the diffusion of innovation in a situation of uncertainty about environmental and health risks? What (conventional) factors have a specific influence on the uptake of an industrial good in the context? The quantity of scientific articles examining toxicity of nanomaterials such as nanosilver is constantly growing (see Figure 2). Increasing scientific evidence of potential undesirable effects of a new product might have an important effect on the rise of scientific controversy

Cumulative number of adoptions

Time

Chapter 1. Background of the thesis

6 surrounding nanosilver and public concern. This controversy is fueled by the rapidly expanding quantity of new scientific knowledge related to risk which might lead to decrease in its (uptake) consumption. The conclusions of research papers on risk might diverge significantly. Some papers conclude that there is a potential risk to health and environment associated with nanosilver, the others conclude that there is no potential risk. Sometimes, the findings of the research are unclear (for example, if they state some effects without indicating whether they are harmful or not) or the author(s) could not reach a conclusion. The ongoing divergence of conclusions is also likely to spark more controversy. Figure 2. Number of publications: nanosilver and toxicity

Source: Ostapchuk, based on PubMed

Our main working hypothesis is about new scientific knowledge about risk. Drawing upon the precautionary principle (PP) and a model of impact for unfortunate event (which are discussed in more detail in Chapter 2 and Chapter 4), we hypothesize that the increasing quantity of new scientific knowledge about risk impacts negatively the diffusion of innovation in a situation of uncertainty about environmental and health risks. The higher the quantity of scientific knowledge about risk related to a product, the lower the sales of this product. Indeed, Godard (2003) sheds light on the importance of scientific knowledge in the case of decisions under uncertainty. The quantity of scientific knowledge is one of the dimensions of plausibility. Scientific plausibility is an important element of the principle of proportionality, which is a part of the precautionary principle (Godard, 2003). The PP applies where there is a lack of scientific certainty about characterization and assessment of risks (Sunstein, 2005). The PP underpins most EU regulations. Besides, the European Commission recommends to adoptquotesdbs_dbs46.pdfusesText_46
[PDF] Les adjectifs

[PDF] les adjectifs de couleur exercices corrigés pdf

[PDF] Les adjectifs de la 2ème classe

[PDF] les adjectifs démonstratifs exercices pdf

[PDF] les adjectifs démonstratifs pdf

[PDF] Les adjectifs possessifs

[PDF] les adjectifs possessifs et démonstratifs exercices

[PDF] Les adjectifs qualificatifs

[PDF] les adjectifs qualificatifs exercices pdf

[PDF] les adolescents et les parents

[PDF] Les ados

[PDF] les adverbes exercices pdf

[PDF] Les affaires de Jacques coeur

[PDF] les affaires publiques définition

[PDF] les affiches de la propagande durant la seconde guerre mondiale