[PDF] Tableaux des dérivées Dérivées des fonctions usuelles Notes





Previous PDF Next PDF



GENERALITES SUR LES FONCTIONS

Donner le tableau de variations de la fonction f définie sur [ – 8 ; 4 ] de la courbe ci-dessus. x. ?8. – 5. 2. 4. 3. 6 f 



FONCTION LOGARITHME NEPERIEN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME. NEPERIEN. En 1614 un mathématicien écossais



Tableaux des dérivées Dérivées des fonctions usuelles Notes

(1) Une fonction constante est représentée par une droite de coefficient directeur (pente) nul. En tout point de cette droite le coefficient directeur 



-8.5cm Maths et stats en Gestion .5cm Chapitre IV Mesure de l

En mathématiques les variations d'une fonction réelle d'une variable évident que les différentes composantes de f (x) augmentent. Exemple g = x2 +.



FONCTION DERIVÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION DERIVÉE. I. Dérivées des fonctions usuelles. Exemple : Soit la fonction f définie sur 



Intégrales de fonctions de plusieurs variables

Si f est une fonction d'une variable l'intégrale de f sur un intervalle [a



FONCTIONS DE REFERENCE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS DE REFERENCE Définitions : Soit f une fonction définie sur un intervalle I.



LIMITES DES FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Certaines fonctions admettent des limites différentes en un réel A selon x > A ou.



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 



fondmath1.pdf

2 Pratiques sur les fonctions (applications) usuelles Licence L1 parcours Maths-info puis cliquer sur Fondamentaux des mathématiques I.

Tableaux des dérivées Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Dérivées des fonctions usuellesNotes

Fonction f Fonction dérivée f ' Intervalles de dérivabilité Pf (x) = k (constante réelle)f ' (x) = 0ℝ 1

Uf (x) = x f ' (x) = 1ℝ2

If (x) = ax + b f ' (x) = aℝ3

Sf (x) = x²f ' (x) = 2xℝ

Sf (x) = xn (n∈ℕ)f ' (x) = nxn-1ℝ

Af (x) = 1

x f ' (x) = - 1 x2]0; +∞[ ]-∞; 0[

Nf (x) = 1

xn = x-n (n∈ℕ)f ' (x) = - n xn1 = -nx-n-1]0; +∞[ ]-∞; 0[

Cf (x) = x f ' (x) = 1

2x]0; +∞[4

Ef (x) = x

f ' (x) = x-1selon les valeurs de l'exposant , voir les dérivées précédentes5 f (x) = cos xf ' (x) = - sin xℝ f (x) = sin x f ' (x) = cos xℝ f (x) = tan xf ' (x) = 1 cos2 x = 1 + tan²x

2;

2[

2k;

2k1[f (x) = exf ' (x) = exℝ

f (x) = ln xf ' (x) = 1 x ]0; +∞[

(1) Une fonction constante est représentée par une droite de coefficient directeur (pente) nul.

En tout point de cette droite, le coefficient directeur (pente) est nulle.

(2) La fonction x  x est représentée par une droite de coefficient directeur (pente) égal à 1

En tout point de cette droite, le coefficient directeur (pente) est égal à 1.

(3) La fonction x  ax + b est représentée par une droite de coefficient directeur (pente) égal à a.

En tout point de cette droite, le coefficient directeur (pente) est égal à a. (4) x = x1/2

(5) Cette ligne résume toutes celles qui précèdent. C'est la formule à retenir pour déterminer les primitives d'une

fonction puissance.

"La différence entre le mot juste et un mot presque juste est la même qu'entre l'éclair et la luciole." Mark Twain

1/2 C:\Users\Louis-Marie\Documents\Lycee\docs_lycee_09_10\fiche\tableaux_derivees.odt

23/10/15

Tableaux des dérivées Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Dérivées et opérations

Dans ce formulaire, u et v sont des fonctions

Opérations sur les fonctionsDérivéesConditions f = u + v f ' = u' + v' u et v dérivables sur un intervalle I f = ku (k constante)f ' = ku' u dérivable sur un intervalle I f = uv f ' = u' v + v' uu et v dérivables sur un intervalle I f = 1 v f ' = -v' v2 v dérivable sur un intervalle I et v ne s'annule pas sur cet intervalle I f = u v f ' = u'v-v'u v2u et v dérivable sur un intervalle I et v ne s'annule pas sur cet intervalle I

1f = v ° u f ' = u' ×(v' °u)u dérivable sur un intervalle I à

valeurs dans J , et, v dérivable sur J. f = u  f ' = u' u-1 selon les valeurs de  f = uf ' = u'

2u u dérivable sur un intervalle I

et u > 0 f = cos u f ' = -u' ×sin uu dérivable sur un intervalle I f = sin u f ' = u' ×cos uu dérivable sur un intervalle I f = eu f ' = u' ×euu dérivable sur un intervalle I f = ln u f ' = u' u u dérivable sur un intervalle I et u > 0 f (x) = u(ax + b)f ' (x) = au' (ax + b)ax + b appartient à un intervalle sur lequel u est dérivable (1) La dérivée d'une fonction composée .... Toutes les lignes qui suivent sont des cas particuliers de cette formule générale

"La différence entre le mot juste et un mot presque juste est la même qu'entre l'éclair et la luciole." Mark Twain

2/2 C:\Users\Louis-Marie\Documents\Lycee\docs_lycee_09_10\fiche\tableaux_derivees.odt

23/10/15

quotesdbs_dbs46.pdfusesText_46
[PDF] Les différentes formes d'énergies

[PDF] les differentes formes d'innovations

[PDF] les différentes formes d'un objet qui chute Énergie et sécurité routière

[PDF] les différentes formes d'éducation

[PDF] les différentes formes d'énergie 6ème

[PDF] les différentes formes d'énergie 6ème evaluation

[PDF] les différentes formes d'inégalités

[PDF] les différentes formes de consommation pdf

[PDF] les différentes formes de cybercriminalité

[PDF] les différentes formes de gouvernement

[PDF] les différentes formes de poésie

[PDF] les différentes formes musicales

[PDF] les différentes graphies du son s exercices

[PDF] Les différentes lectures d'une équation chimique

[PDF] Les différentes libertés, exercice à faire pour lundi 1o Septembre