[PDF] 5G3 – Mécanique Un corps en chute libre





Previous PDF Next PDF



Plan incliné pour létude des frottements 02048 Plan incliné pour létude des frottements 02048

mouvement relatif. Principe. Soit un solide S en contact en un point I avec un autre solide S'. Soit R la résultante s'exerçant sur le solide S et M le 



-1- Expérience no 4 LE PLAN INCLINE I INTRODUCTION Le

Pour un frottement faible la solution est un mouvement harmonique avec amortissement linéaire. (Fig.5). Pour éviter d'intégrer (13): la perte d'énergie 



Détermination du coefficient de frottement statique avec le plan incliné

Notions de base. La force de résistance. F1 = G ⋅ sinα. (I) agit sur un corps de poids G parallèlement à un plan incliné et la force normale.



Rédiger un exercice

Un livre posé sans mouvement sur un plan incliné. Un skieur tiré par une perche sur Réaction avec frottement R exercé par le plan ou. Poids de la boule P.



Corrigé des exercices MÉCANIQUE

décrit un cercle dans un plan horizontal la ficelle formant un angle α = 25° avec verticales s'annulent et la force de frottement Ffr = Ma = 600*6 = 3600 N.



CORRECTION DU DS N°5

Exercice n°1 : Solide glissant avec frottements sur un plan incliné : 9pts. 1 Exercice n°2 : Mouvement sans frottements sur un plan incliné : 8pts. 1) Le ...



TP-2 Plan incliné

Mouvement avec frottement



UAA3 : LA STATIQUE – FORCES ET EQUILIBRES

lorsqu'il s'agit par exemple d'un plan incliné (que l'on étudiera plus tard). • Le frottement est différent selon qu'un des corps soit en mouvement ou au repos.



DM no2 – Dynamique Newtonienne

On considère le mouvement sans frottement d'un point matériel M de masse m dans un plan 3) Les ressorts sont tendus le long d'un plan incliné de α = 30◦ avec ...



PHY-144 : Introduction à la physique du génie Chapitre 8: Cinétique

plan incliné avec frottement (µk = 01). Calculez son énergie cinétique et sa vitesse



FORCES (ET FROTTEMENT)

Seuls les mouvements le long du plan incliné sont possibles ? Ils sont dus à Les poulies sont légères et sans frottement il n'y a donc pas de force ...



-1- Expérience no 4 LE PLAN INCLINE I INTRODUCTION Le

On utilise le plan incliné avec la boule de billard (Fig.2) L'équation du mouvement (frottement sur le palier P négligé):.



DM no2 – Dynamique Newtonienne

On considère le mouvement sans frottement d'un point matériel M de masse m dans un plan vertical passant par OA. 1) OA étant une verticale ascendante et le 



UAA3 : LA STATIQUE – FORCES ET EQUILIBRES

un plan incliné ne changent pas tandis que ceux du plan incliné changent. • Frottement de roulement : Le mouvement est caractérisé par un changement des 



Leçon 1 : Contact entre deux solides. Frottement

dans le cône de frottement. Exemple 1 : Solide sur un plan incliné frottement statique entre le solide et le plan horizontal du mouvement.



CORRECTION DU DS N°5

Exercice n°1 : Solide glissant avec frottements sur un plan incliné : Le centre inertie de S est animé d'un mouvement rectiligne uniforme ...



Plan incliné pour létude des frottements 02048

But. Étude expérimentale des lois relatives aux forces de contact entre solides en équilibre ou en mouvement relatif. Principe. Soit un solide S en contact en 



Rédiger un exercice

Un livre posé sans mouvement sur un plan incliné. {livre}. Réf terrestre. Bilan : Poids du livre P. Réaction avec frottement R exercé par le plan.



5G3 – Mécanique

Un corps en chute libre est en MRUA avec une accélération a = g Le système de référence doit dans le cas d'un mouvement plan comporter deux axes que ...



1 Glissement dun mobile sur un support

Mouvements en référentiel galiléen et en référentiel tournant R normale au plan incliné (figure ci-contre). Soit ... 1.1.2 Glissement avec frottement.



[PDF] -1- Expérience no 4 LE PLAN INCLINE I INTRODUCTION - UniNE

On utilise le plan incliné avec la boule de billard (Fig 2) L'équation du mouvement (frottement sur le palier P négligé):



[PDF] FORCES (ET FROTTEMENT)

Seuls les mouvements le long du plan incliné sont possibles ? Ils sont dus à Nous verrons plus loin que bien que compensée par la réaction du plan affecte le



[PDF] CORRECTION DU DS N°5 - Physagreg

Exercice n°1 : Solide glissant avec frottements sur un plan incliné : 9pts 1) On étudie comme système le solide S dans le référentiel terrestre lié au plan 



dynamique / II-3 plan incliné avec frottements - YouTube

13 mar 2016 · principe fondamental de la dynamique équations horaires du mouvement dans le cas d'un Durée : 15:02Postée : 13 mar 2016



[PDF] Plan incliné pour létude des frottements 02048 - Pierron

On soulève ensuite progressivement le plan incliné On constate qu'à partir d'un certain angle d'inclinaison du plan certains solides se mettent en mouvement



[PDF] Mouvement sur un plan incliné On considère un solide de masse m

Les frottements sont négligés : la force modélisant l'action du plan incliné sur le solide est donc perpendiculaire au plan incliné Le solide est lancé



[PDF] DM no2 – Dynamique Newtonienne

Un point matériel M soumis à la pesanteur et à une force de frottement fluide opposée à la vitesse est lancé avec une vitesse initiale inclinée d'un angle ? 



[PDF] UAA3 : LA STATIQUE – FORCES ET EQUILIBRES

Frottement de roulement : Le mouvement est caractérisé par un changement des points de contact pour les deux corps (Balle sur un plan incliné : les points 



[PDF] TP-2 Plan incliné

Mouvement avec frottement d'une masse M sur un plan incliné Dispositif expérimental Même dispositif expérimental que dans la manipulation 1

  • Comment calculer la force de frottement sur un plan incliné ?

    La force de frottement est F = µN = µ. M1. g. cos? .
  • Comment montrer que le mouvement se fait avec frottement ?

    Tout d'abord, la force de frottement est statique, car l'objet est immobile. Dès que la force de traction appliquée devient supérieure à la force de frottement statique, l'objet se met en mouvement. La force de frottement diminue rapidement (une phase qu'on appelle glissement adhérent) pour ensuite devenir constante.
  • Comment calculer la réaction du plan avec frottement ?

    Pour un corps au repos sur une surface, l'intensité de la force maximale de frottement, notée �� , est donnée par �� = �� �� , où �� est le coefficient de frottement statique entre le corps et la surface et �� est l'intensité de la réaction normale.
  • L'intensité de la force maximale de frottement, �� , entre un corps au repos et la surface sur laquelle il repose est donnée par �� = �� �� , où �� est le coefficient de frottement statique entre le corps et la surface. Dans le cas d'une surface horizontale, �� = �� �� , et donc �� = �� �� �� .

5G3 - Mécanique - Page 1 de 64

Athénée royal Jules Delot, CineyMécanique" Toutes les choses sont placées dans le temps comme un ordre de succession et dans l'espacecomme une ordre de situation. »

Issac Newton" ...Faites avancer le bateau à l'allure qui vous palira, pour autant que la vitesse soit uniformeet ne fluctue pas de part et d'autre. Vous ne verrez pas le moindre changement dans aucun deseffets mentionnés et même aucun d'eux ne vous permettra de dire si le bateau est enmouvement ou à l'arrêt... »

GaliléeDialogue convernant des deux plus grands systèmes du monde." Une théorie est bonne lorsqu'elle est belle. »

Henri Poincarré.Physique 5ème Générale3h/semaineIr Jacques COLLOT1

5G3 - Mécanique - Page 2 de 64

MECANIQUE1. Rappels de mécanique Le mouvement est rectiligne si sa trajectoire est une droite.Repère1.1 MRU Le mouvement est uniforme si sa vitesse est constante.Le déplacement - odxx=La vitesse moyenne

dVt= est constanteen km/h ou m/sLa vitesse est obtenue en calculant la pente du graphe

()xft=1.2 MRUV L'accélération est définie comme la variation par unité de temps du vecteur vitesse V

- oVVVatt D==Dest constanteen m/s²L'accélération est obtenue en calculant la pente du graphe ()vft=MRUA ® a positive, MRUD ® a négativeFormules du MRUV o o a.t²d = V.t + 2

V = V + a.t

Distance parcourue

Vitesse 1.3 Chute libre (sans frottements)Un corps en chute libre est en MRUA avec une accélération a = g

= 10 m/s² 2 g . t²h =

V = g . t2Point deréférence ouoriginePosition initialeen t = 0Vitesse V0Position après t secondesde mouvementVitesse V0xoxAXE X

5G3 - Mécanique - Page 3 de 64

1.4 Corps lancé vers le basUn corps lancé vers le bas est également en chute libre maisavec une vitesse initiale V0.0

0 2 g . t²h = V t +

V = V + g . t1.5 Corps lancé vers le haut Un corps lancé vers le haut est en MRUD avec une accélération g = -9.81 m/s².

En chute libre, la direction de l'accélération est toujours strictementverticale et orientée vers le bas. Si un objet est jeté vers le hautverticalement, il restera sur une trajectoire verticale. En montant,l'objet sent une accélération négative, a = - g. Sa vitesse diminuerajusqu'à l'arrêt momentané au sommet de sa trajectoire. La descente estla même que pour un objet lâché du sommet: il subit l'accélération a =

+ g à partir de v0 = 0.

1.6 Lois de Newton1ere loi : principe d'inertie

Un objet ne subissant aucune force (résultante des forces égale à zéro)se déplace en MRU. Autrement dit, si la résultante des forces appliquées à un corps est nulle alors la vitesse de cecorps ne change pas. En particulier, s'il est immobile, il reste immobile.

2eme loi : loi fondamentale de la dynamiqueSi la résultante S F des forces agissant sur un corps de masse m est constante, alors le corpsvoit sa vitesse changer. Il est alors accéléré et son mouvement est un MRUV avec uneaccélération a qui est telle que :

uuuuruuurΣF=m.a1.7 Travail - puissance - énergieTravail d'une force ..cosWFd=aen joulePuissance

WPt=en WattEnergiepotentielle

PEmgh=en jouleCinétique

21

2CEmv=en jouleMécanique

PCEEE=+en joule3

5G3 - Mécanique - Page 4 de 64

2. Les grandeurs instantanées2.1 La vitesse instantanéeNous connaissons déjà la notion de vitesse instantanée comme étant la vitesse du mobile à uninstant précis V(t).2.1.1 Cas d'un mouvement uniformeNous savons que pour un MRU, le graphe de la position en fonction du temps ()xft= estune droite oblique.La vitesse instantanée est constante et elle peut se déterminer en calculant la pente du graphe

()xft=4La pente = xVt DD=DL'analyse rapide de la pentenous indique que le mobile1 va plus vite que le 2

5G3 - Mécanique - Page 5 de 64

2.1.2 Cas d'un mouvement non uniforme ou variéLa vitesse d'un mobile varie dans laplupart des mouvements quotidiens. Elle peut augmenter, diminuer et mêmechanger de signe. La vitesse peutchanger à tout instant.La vitesse est une fonction du temps etle graphe x =f(t) n'est plus une droiteNous devons donc être capables dedéterminer la vitesse du mobile à uninstant t quelconque du mouvement Pour calculer la vitesse instantanée v(t) àl'instant t, l'idée consiste à déterminer la vitessemoyenne pendant un intervalle de temps [t, t+Dt]

et de prendre des Dt de plus en plus petits.De cette façon, la vitesse moyenne calculée estd'autant plus proche de la vitesse à l'instant tque Dt est petit.Pour comprendre ce principe analysons un graphe()xft= quelconquePartons du calcul de la vitesse moyenne entre les instants

et m

XtttVt

D+D®=D

Considérons des Dt de plus en plus petits, la vitessemoyenne ainsi calculée va tendre vers une valeur quiindiquera la valeur de la vitesse au temps t donc V(t)

On écrira

()xVtt

D=Dquand Dt devienttrès petitLes mathématiciens utilisent le symbole suivant pourexprimer cette idée :

()0 limt xVttD®

D=DLe segment de droite qui joint les extrémités del'intervalle finit par se confondre avec la tangente à lafonction au point où nous désirons connaître la vitesse soit

()Vt.

Or la pente d'une telle droite dans un graphique x = f(t) nous donne la vitesse du mobile àl'instant considéré.Pour déterminer la vitesse V(t) à l'instant t, on trace la tangente à la courbe x : f(t) àl'instant t. On détermine ensuite cette tangente.V((t) Þ pente de la tangente à la courbe x(t) à l'instant t5

5G3 - Mécanique - Page 6 de 64

2.2 Accélération instantanéeL'accélération instantanée représente l'accélération du mobile à un instant précis a(t).2.2.1 Cas du mouvement uniformément variéNous savons que pour un MRUV, le graphe de la vitesse en fonction du temps ()Vft=estune droite oblique.L'accélération instantanée est constante et elle peut se déterminer en calculant la pente dugraphe

()Vft=

6La penteDV / Dt de cesgraphes donnela valeur del'accélération adu mobile

5G3 - Mécanique - Page 7 de 64

2.2.1 Cas du mouvement non uniformément variéEn pratique, les mouvements des corps sont tels que la vitesse varie (augmente ou diminue)mais d'une manière non uniforme. L'accélération qui endécoule n'est alors plus constante et elle évolue à chaqueinstant.Voici le graphe ()Vft= d'une voiture qui démarre.On se propose alors de déterminer l'accélération à chaqueinstant soit

()at.

Le principe est le même que pour le calcul de la vitesse instantanée sinon que l'on travaille surun graphe

()Vft=En fait, pour calculer

()at, nous utilisons l'accélération moyenne pendant un intervalle detemps [t, t+Dt]. Ensuite, on fait tendre Dt vers 0. De sorte que cette accélération moyenne vareprésenter l'accélération à l'instant t si Dt est petit.Par un raisonnement identique à celui fait pour la vitesse instantanée, l'accélérationinstantanée a (t) = pente de la tangente à la courbe dans le graphique V(t) à l'instant t3. Les grandeurs vectorielles3.1 Vecteur positionLe système de référence doit dans le cas d'un mouvement plan comporter deux axes que nouschoisirons orthogonaux et munis de la même unité (de longueur).On les note X et YLe vecteur position est un vecteur dont l'origine est l'origine O du système d'axes et dontl'extrémité est le point matériel. Il caractérise la position du point P parrapport à l'origine du repère.Le vecteur position a deux composantes:

() {(), ()}rtxtyt=rLa valeur ou la grandeur de ()rt® est donnéepar : ()[][]22()()rtxtyt=+70 Y P(t) y(t) rt® X x(t)

5G3 - Mécanique - Page 8 de 64

3.2 Vecteur déplacementConsidérons l'intervalle de temps [t1, t2]

Regardons uniquement la position à l'instant t1 et laposition à l'instant t2. Le corps a effectué un déplacementreprésenté par un vecteur d® qui a 2 composantes{ , }dxdyLe déplacement

d®est le vecteur 12()()PtPtuuuuuuuuuur dont les 4caractéristiques sont :

·une origine:

()1Pt·une direction: celle qui comprend les points ()()12et PtPt un sens: de ()()12vers PtPt·une valeur: d

Le vecteur déplacement

duur entre deux positions (ou deuxinstants) indique le changement global de position du mobile, sanstenir compte de la trajectoire suivie entre ces deux positions.3.3 Vecteur Vitesse En physique, la vitesse est une grandeur vectorielle notée

vt® () etdéfinie par : ()00 limlimmoyenne tt dvtvt

D®D®

==D urr

Considérons l'intervalle de temps [t, t+ Dt].

Remarque sur la direction de

vt®

()Lorsque l'on fait tendre Dt vers 0, la direction du vecteurdéplacement d® tend vers la direction de la tangente à latrajectoire au point P(t). Le vecteur vitesse V(t) est donc un vecteur tangent à la trajectoire Les composantes de la vitesse instantanée

()vtrsont données par ()(),xyvtvt

La grandeur

²²xyvvv=+Sa seule composante

t txttx t dtvt x txD -D+=D=®D®D )()(limlim)(00

Si nous faisons tendre Dt vers 0, x(t+Dt)-x(t) tend également vers 0, mais le rapport vatendre vers la dérivée de x(t) que nous noterons

xt. ()(voir cours de math. 5G sur les dérivées)

Le vecteur vitesse instantanée s'écrit :

()()vtrt =8 Y P(t) vt®

P(t+Dt)

X

5G3 - Mécanique - Page 9 de 64

3.4 Accélération instantanéeL'accélération instantanée )(taest également un vecteurdéfinit par :

)(ta = limDt®0 moyennea® = limDt®0 v t D D uuret possédant deux composantes et xyaaDe sorte que sa norme se calcule par ²²aaxay=+Dans le cas d'un mouvement rectiligne, l'accélération aune seule composante: 00 ()()()limlimxxx xtt vvttvtatttD®D® +D-==DD

Si nous faisons tendre Dt vers 0, vx(t+Dt)-vx(t) tendégalement vers 0, mais le rapport va tendre vers ladérivée de vx(t) que nous noterons : ()xvt·

Le vecteur accélération instantanée s'écrit : x()()atvt =(voir cours de math. 5G sur les dérivées) 9

5G3 - Mécanique - Page 10 de 64

3.4.1Accélérations normale et tangentielle- Lorsque seule la valeur de la vitesse change, alors l'accélération est tangente à latrajectoire. (Voir mouvements rectilignes).- Lorsque seule la direction de la vitesse change, alors l'accélération est normale à latrajectoire. (Voir mouvement circulaire)3.4.1.1 Illustration : Le mouvement circulaire uniforme ( MCU )Dans le cas d'un mouvement circulaire uniforme, la valeur de la vitesse est constante ()()vttvtv+D==Le vecteur vitesse change par le fait que sa direction varie au cours du temps. On dit qu'il ya une accélération mais on va voir qu'elle n'est plus // au vecteur

vr mais elle lui estperpendiculaire Sur une circonférence de centre O, et de rayon R, ()Pt(correspondant au vecteur ()rtr) et ()Ptt+D (correspondant au vecteur ()rtt+Dr) sont deux positions du mobile au temps t et t + Δt. Pour simplifier l'écriture, appelons M la position

()Pt et M' la position ()Ptt+DPendant le temps Dt, le mobile parcourt un arc de cercle Ds, correspondant à une distance Dc =MM' (corde). Au point M, portons le vecteur vitesse

()vtr et en M', portons le vecteur

()vtt+Dr. Ces deux vecteurs sont de même grandeur mais de direction différente. Il y adonc une variation de la vitesse. Reportons maintenant en M, le vecteur

()vtt+Dr. Lavariation de la vitesse pendant l'intervalle de temps [],ttt+D est ()()vvttvtAB®® D=+D-=ruuuret donc l'accélération moyenne est moyenne vABatt

®D==DD

ruuur.

Les angles

··' et MOMBMA sont égaux car ce sont des angles côtés perpendiculaires. Lestriangles OMM' et OAB sont donc des triangles isocèles semblables :

'OMMMRccABvvMAABvvR

DD®=®=®=D=DLorsque Dt tend vers 0, l'accélération moyenne tend vers l'accélération instantanée et la cordetend vers l'arc de cercle. Ce que l'on écrit :

0' moyenneaatcMMs rr ruuuuurrOn a alors : 2

0000limlim.limlim car tttt

vvcvcvsvsavtRtRtRtRtD®D®D®D® DDDDD======DDDDDNotons de plus que MB étant perpendiculaire à OM', on a ··''2OMMMMBp+=, mais commeles angles OM'M et ABM sont égaux :

··'2ABMMMBp+=. Autrement dit, ABc^Duuurr.

On en conclut que quand Dt®0,

et donc vaDrr seront perpendiculaires à sDr, c'est-à-direégalement à ()vtr 10

5G3 - Mécanique - Page 11 de 64Y

X ()vtuuur ()Pt ()rtuuur O cD sD Y X O cD sD M' M A

BLa direction du vecteur accélération instantanée est donc normale à latrajectoire et son sens le dirige vers le centre de la circonférence et sagrandeur vaut :

2vaR=D'une manière générale,

()at® possède pour une trajectoire courbe, 2 composantes- une composante tangentielle ()tat®

à la vitesse qui fait varier la valeur de la vitesse- une composante normale ()nat® à la vitesse qui fait varier la direction de la vitesse.

P(t) vt®

att atn () P(t+Dt) at® () vtt® +()D

()()()nttttaaa=+uuruuruuur4. Les mouvements rectilignesLes notions vectorielles de position, de déplacement, de vitesse et d'accélération définies pourdes mouvements paraboliques (2 dimensions) sont évidemment applicables aux mouvementsrectilignes (1 dimension).Nous ne les développerons donc pas. Toutefois, il est intéressant de reprendre les notionsvectorielles de l'accélération et de la vitesse afin de mettre en évidence l'importance del'orientation de l'axe de référence ainsi que l'orientation des vecteurs.

Voici quelques exemples de MRUVRappelons que dans ce cas t tVtVaD -=)1()2(r11

5G3 - Mécanique - Page 12 de 64

Le sens de ar est celui de la différence ()1()2(tVtV-)

Pour une question de clarté, dans les dessins suivants, les vecteurs vitesse et accélération n'ontpas comme origine la position du mobile à l'instant considéré.Mouvement accéléré.

L'accélération et la vitesse ontle même sens : ax et vx ont lemême signe.

O P(t1) P(t2)

X

1()vt®

2()vt®

Mouvement décéléré.

L'accélération et la vitesse sontde sens contraires : ax et vx sont de signes contraires.

O P(t1) P(t2)

X

1()vt®

2()vt®

Mouvement accéléré.

L'accélération et la vitesse ontle même sens : ax et vx ont lemême signe.

O P(t2) P(t1)

X

2()vt®

1()vt®

Mouvement décéléré. L'accélération et la vitesse sontde sens contraires : ax et vx sontde signes contraires.

O P(t2) P(t1)

X

2()vt®

1()vt®

Conclusion

Le mouvement est :

MRUA ssi le produita .V est positifMRUDssi le produita . V est négatifCas des corps lancés vers le haut ou vers le basL'étude de tels mouvements peut se faire suivant un axe vertical orienté vers le haut ou vers lebas. Bien que les équations de départ soient différentes, le résultat final de l'étude duproblème ne dépend absolument pas de l'orientation de l'axe vertical. Equations

2 0 2oo gtyyvt vvgt =+12

5G3 - Mécanique - Page 13 de 64

Corps lancé vers le haut13

5G3 - Mécanique - Page 14 de 64

Lecture14

5G3 - Mécanique - Page 15 de 64

5. Les mouvements paraboliques : trajectoire3.5 Exemples de mouvements paraboliques3.5.1 Corps lancé horizontalementCe mouvement est la combinaison d'unMRU suivant X et d'un MRUA vers lebas suivant YEn effet, il n'agit aucune forcehorizontalement. En vertu du principed'inertie, le mouvement horizontal estdonc un MRUVerticalement, la force de la pesanteuragit. En vertu de la deuxième loi deNewton, le mouvement vertical est doncun MRUA

Exemple15

5G3 - Mécanique - Page 16 de 64

3.5.2 Corps lancé vers le haut avec une inclinaison a

Il apparaît que le mouvement suivant l'axe X et lemouvement suivant l'axe Y sont complètement indépendantsl'un de l'autre.Le mouvement parabolique (corps lancé vers le haut avec uneinclinaison par rapport à l'horizontal) est la composition de 2mouvements rectilignes Le corps est lancé avec une vitesse initiale 0vuur qui fait un anglea avec l'axe X

La vitesse étant un vecteur, on peut le décomposer en deux composantes : 00 00

Une // à l'axe X : . cos

Une // à l'axe Y : . sin

x y vv vv =a =aL'étude du corps lancé avec un angle a se ramène alors à l'étude :

Suivant X d'un MRU avec une vitesse 00cosxvv=aSuivant Y d'un corps lancé vers le haut avec une vitesse

00sinyvv=aChaque mouvement obéit à ses propres équations et ce dans la direction suivant laquelle ilse produit.16

5G3 - Mécanique - Page 17 de 64

Etude de la trajectoire La trajectoire de l'objet est une courbe. Comment déterminer l'équation de cettetrajectoire ?

Prendre les équations de x = f(t) et y = f(t)et les combiner pour éliminer t.Comme le temps est le même pour les 2équations, celles-ci décrivent lemouvement d'un seul corps et non celui dedeux corps différents. (Voir exercices)Exemple 117

5G3 - Mécanique - Page 18 de 64

Exemple 218

5G3 - Mécanique - Page 19 de 64

Remarque : Dans la réalité, la résistance de l'air est loin d'être négligeable surtout pour desvitesses élevées. La portée réelle est alors nettement plus courte et le maximum est atteintpour un angle proche de 35°. 6 Exercices de mécanique6.1. Exercices résolus1. Un train effectue normalement un trajet entre une ville A et une ville B en 4 heures (pourrespecter son horaire).Un incident à mi-parcours provoque l'arrêt du convoi durant 5 minutes. Pour arriver à l'heurenormalement prévue à l'horaire, le conducteur doit augmenter la vitesse du train de 10 km/h

pour le reste du trajet.Déterminer la longueur totale d du trajet et la vitesse v normalement prévue à l'horaire, si onsuppose pour chaque cas que le train circule à vitesse constante sans s'arrêter et que l'on netient pas compte, pour le calcul, des phases d'accélération ni de freinage du convoi..SuggestionsSoit v2 la vitesse du train pendant la deuxième partie du trajetSoit t1 le temps de la première partie du trajetSoit t2 le temps de l'arrêt. Que vaut t2 ?

Soit t3 le temps de la deuxième partie du trajet.1)En temps normal, quelle relation relie v et d ?

2)Que vaut v2 en fonction de v ?

3)Exprimer t1 en fonction de d et v

4)Exprimer t3 en fonction de d et v2

5)Que vaut t1 + t2 + t3 ?

6)Vous pouvez conclure2

11 3quotesdbs_dbs35.pdfusesText_40
[PDF] les carnets thermomix les confitures pdf

[PDF] les sauces thermomix pdf

[PDF] liste cocktail pdf

[PDF] cocktails pdf

[PDF] recette cocktail sans alcool pdf

[PDF] cocktail rhum pdf

[PDF] seiko spring drive

[PDF] seiko france

[PDF] seiko 5

[PDF] pratique du bar et des cocktails pdf

[PDF] mouvement seiko

[PDF] observer et décrire différents types de mouvements cycle 3 evaluation

[PDF] boule d'énergie ricardo

[PDF] mouvement rectiligne en arabe

[PDF] exercices corrigés sur le mouvement circulaire uniforme