[PDF] FONCTIONS COSINUS ET SINUS 2) Valeurs remarquables des fonctions





Previous PDF Next PDF



Les fonctions

Pour définir une fonction et obtenir sa courbe représentative dans GeoGebra : • Positionner le curseur dans le champ de sai- sie. • Inscrire par exemple : 



LES FONCTIONS DE RÉFÉRENCE

Partie 1 : Fonction paire fonction impaire. 1. Fonction paire. Définition : Une fonction dont la courbe est symétrique par rapport à l'axe des ordonnées.



Fonctions Représentation graphique Tableau de valeurs CASIO

Touches et pour se déplacer sur la courbe. L'expression de la fonction ainsi que les coordonnées du point où est situé le curseur sont affichées.



Fonctions TI-83 Premium CE

Touches et pour se déplacer sur la courbe. L'expression de la fonction ainsi que les coordonnées du point où est situé le curseur sont affichées. Calculer 



FONCTIONS DE REFERENCE

- Dans un repère orthogonal la courbe de la fonction inverse est symétrique par rapport au centre du repère. Méthode : Etudier le sens de variation d'une 



Chapitre 6 - Fonctions vectorielles et courbes paramétrées - Cours

Chapitre 6 - Fonctions vectorielles et courbes paramétrées - Cours Définition : Une courbe paramétrée est une fonction vectorielle f : I ? Rn.



Seconde - Courbes représentatives de fonctions

En revanche ( ; ) n'est pas un élément du graphe de . 2) Tableau de valeurs. Un exercice simple et utile pour s'aider à tracer la courbe d'une fonction.



NOTION DE FONCTION

Tracer dans un repère



GENERALITES SUR LES FONCTIONS

coordonnées ( x ; y ) lorsque x prend toutes les valeurs de Df et que y = f(x). On dit aussi courbe représentative de la fonction f. On dit que la courbe a 



FONCTIONS COSINUS ET SINUS

2) Valeurs remarquables des fonctions sinus et cosinus : Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus il.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTIONS COSINUS ET SINUS I. Rappels 1) Définitions : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M. Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cosx. - Le sinus du nombre réel x est l'ordonnée de M et on note sinx. Propriétés : Pour tout nombre réel x, on a : 1)

2)

3) cos2 x + sin2 x= 1 2) Valeurs remarquables des fonctions sinus et cosinus : x 0

6 4 3 2 cosx 1 3 2 2 2 1 2

0 -1 sinx

0 1 2 2 2 3 2 1 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2II. Propriétés des fonctions cosinus et sinus 1) Périodicité Propriétés : 1)

cosx=cosx+2kπ où k entier relatif 2) sinx=sinx+2kπ où k entier relatif Démonstration : Aux points de la droite orientée d'abscisses x et x+2kπ

ont fait correspondre le même point du cercle trigonométrique. Remarque : On dit que les fonctions cosinus et sinus sont périodiques de période

. Conséquence : Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur

et de la compléter par translation. Méthode : Résoudre une équation trigonométrique Vidéo https://youtu.be/PcgvyxU5FCc Résoudre dans

l'équation cos 2 x= 1 2 cos 2 x= 1 2 ⇔cos 2 x- 1 2 =0 ⇔cosx- 2 2 cosx+ 2 2 =0 ⇔cosx= 2 2 ou cosx=- 2 2 ⇔cosx=cos 4 ou cosx=cos 3π 4

Ainsi :

S= 4 +2k 1 4 +2k 2 3π 4 +2k 3 3π 4 +2k 4

πaveck

i

Soit :

S= 4 kπ 2 aveck∈!

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr32) Parité Propriétés : Pour tout nombre réel x, on a : 1)

cos(-x)=cosx 2) sin(-x)=-sinx

Remarque : On dit que la fonction cosinus est paire et que la fonction sinus est impaire. Définitions : Une fonction f est paire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=f(x)

. Une fonction f est impaire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=-f(x)

. Conséquences : - Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées. - Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine. Méthode : Etudier la parité d'une fonction trigonométrique Vidéo https://youtu.be/hrbgxnCZW_I Démontrer que la fonction f définie sur

par f(x)=sinx-sin2x est impaire. Pour tout x réel, on a : f(-x)=sin-x -sin-2x =-sinx+sin2x =-f(x)

. La fonction f est donc impaire. Sa représentation graphique est symétrique par rapport à l'origine du repère. 3) Autres propriétés Propriétés : Pour tout nombre réel x, on a : 1)

cosπ+x =-cosx et sinπ+x =-sinx 2) cosπ-x =-cosx et sinπ-x =sinx 3) cos 2 +x =-sinx et sin 2 +x =cosx 4) cos 2 -x =sinx et sin 2 -x =cosx

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4 III. Dérivabilité et variations 1) Dérivabilité Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1. - Admis - Théorème : les fonctions cosinus et sinus sont dérivables sur

et on a : cos'(x) = -sin(x) et sin'(x) = cos(x) Démonstration : - Soit x un nombre réel et h un nombre réel non nul.

cos(x+h)-cosx h cosxcosh-sinxsinh-cosx h =cosx cosh-1 h -sinx sinh h Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc : lim h→0 cosh-1 h =0 et lim h→0 sinh h =1 donc lim h→0 cos(x+h)-cosx h =-sinx . - Soit x un nombre réel et h un nombre réel non nul. sin(x+h)-sinx h sinxcosh+cosxsinh-sinx h =sinx cosh-1 h +cosx sinh h Donc lim h→0 sin(x+h)-sinx h =cosx . 2) Variations x 0 π cos'x=-sinx

0 - 0

cosx

1 -1 x 0

2 sin'x=cosx

1 + 0 - -1

sinx

1 0 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5 3) Représentations graphiques Fonction cosinus Fonction sinus Méthode : Etudier une fonction trigonométrique Vidéos dans la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCappSbh79E9sYg99vU5b_nBy On considère la fonction f définie sur

par f(x)=cos2x 1 2

. 1) Etudier la parité de f. 2) Démontrer que la fonction f est périodique de période π

. 3) Etudier les variations de f. 4) Représenter graphiquement la fonction f. YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr61) Pour tout x de , on a : f(-x)=cos-2x 1 2 =cos2x 1 2 =f(x)

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées. 2) Pour tout x de

, on a : f(x+π)=cos2x+π 1 2 =cos2x+2π 1 2 =cos2x 1 2 =f(x) On en déduit que la fonction f est périodique de période π . 3) Pour tout x de , on a f'(x)=-2sin2x . Si x∈0; 2 , alors

2x∈0;π

et donc sin2x ≥0 . Donc si x∈0; 2 , alors . Ainsi f est décroissante sur 0; 2 . x 0 2 f'(x)

0 - 0

f(x) 1 2 3 2

4) Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs46.pdfusesText_46
[PDF] Les fonctions ( exercice)

[PDF] les fonctions ( tableau de valeurs )

[PDF] Les fonctions (CNED n°6)

[PDF] Les fonctions (courbe représentatif)

[PDF] Les Fonctions (développement & factorisation de fonctions )

[PDF] LES FONCTIONS (developpements , factorisations , antecedents , images )

[PDF] Les Fonctions (en maths)

[PDF] Les Fonctions (exercice facile)

[PDF] Les Fonctions (niveau seconde)

[PDF] Les fonctions (pour demain)

[PDF] Les fonctions , triangle , variation

[PDF] Les fonctions , un ex

[PDF] Les fonctions / Orthonormé

[PDF] Les fonctions 2)

[PDF] Les Fonctions 2nd