[PDF] [PDF] [PDF] Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Exercices de mathématiques - Exo7

Exercice 1 ***IT. Domaine de définition et calcul des fonctions suivantes : 1. x ?? sin(arcsinx). 2. x ?? arcsin(sinx)



Cours de Mathématiques L1 Semestre 1

x ?? sin(x) est bijective. arcsin : [-11] ? [- ?. 2.



Fonction arcsin.

S = {arcsin(a) + k2? ; k ? Z}?{? ? arcsin(a) + k2? ; k ? Z}. (ii) Soit a ? R tel que



Section 8 Inverse Trigonometric Functions

For trigonometric functions for instance the graph of y = sin x restricted y = sin x defined only for x on [¡ ... arcsin (sinx) = x for x in [¡.



Lecture 6 : Inverse Trigonometric Functions Inverse Sine Function

Inverse Sine Function (arcsin x = sin?1x). The trigonometric function sinx is not one-to-one functions hence in order to create an inverse



Formule trigonometrice 1. sin? = a c ; cos? = b c ; tg ? = a b ; ctg ?

42. arcsin(sinx) = x x ? [? ?. 2. ; ?. 2] . 43. cos(arccosx) = x



Corrigé de la Feuille 7. Fonctions trigonométriques et

sin(arcsin(x)) : arcsin est la fonction réciproque de la fonction sin de l'in- tervalle [?1;1] dans [? 2] arcsin(sin(x)) = x et ?x ?.



Correction de la feuille 6 : Fonctions circulaires réciproques

arcsin(sin(x)) = (?1)[x/?+1/2](x ? ?[x/? +. 1. 2. ]). (10). Avec la formule (9) la question posée est maintenant très simple. On calcule: 61 = 12 



Pré-rentrée calcul

11 sept. 2020 D'après la définition de la fonction arc-sinus arcsin(sin(x)) est la seule solution z dans l'intervalle [??.



2.5.4 Compléments (fonctions trigonométriques inverses)

la fonction x sin(x)est monotone (strictement croissante) sur l'intervalle [? ?. 2. ?. 2 ]. On définit alors son inverse



[PDF] Cours magistral 4 : Réciproques des fonctions trigonométriques

1 Représentez la fonction x ?? arcsin(sin(x)) 2 Représentez la fonction x ?? sin(arcsin(x))





[PDF] 254 Compléments (fonctions trigonométriques inverses)

I La fonction arcsin: la fonction x sin(x)est monotone (strictement croissante) sur l'intervalle [? ? 2 ? 2 ] On définit alors son inverse arcsin:[ 



[PDF] [PDF] Exo7 - Exercices de mathématiques

Domaine de définition et calcul des fonctions suivantes : 1 x ?? sin(arcsinx) 2 x ?? arcsin(sinx) 3 x ?? cos(arccosx) 4 x ?? arccos(cosx)



[PDF] Pré-rentrée calcul - Ceremade

11 sept 2020 · D'après la définition de la fonction arc-sinus arcsin(sin(x)) est la seule solution z dans l'intervalle [??



[PDF] Chapitre V Fonctions arcsin arccos arctan 1 Définitions 2 Propriétés

1 mar 2017 · arcsin( ? 3 2 ) = 2?/3 mais = ?/3 Démonstration de la proposition : ? ??/2 ? x ? ?/2 sin x = cosx ? 0 > 0 si ??/2



[PDF] Feuille dexercices 7 Fonctions trigonométriques réciproques

Exercice 5 Soit la fonction définie par ( ) = arcsin( ) ?



[PDF] Fonction arcsin - Université de Poitiers - Mathématiques

arcsin(sinx) = x ?x ? [? ? 2 ? 2 ] Attention : l'expression sin(arcsinx) n'est définie que pour x ? [?11] en revanche l 



[PDF] Fonctions trigonométriques réciproques

sin(x) Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] ? [-



[PDF] 2 Fonctions trigonométriques - Université de Rennes

sin(2x) = sin x ?? 2 sin x cos x = sin x ?? 2 sin x cos x ? sin x = 0 ?? sin x(2 cos x ? 1) et arcsin(sin(?)) = arcsin(sin(? ? 2?)) = ? ? 2?

  • Comment calculer arcsin SINX ?

    arcsin(sinx) = arcsin(sin(x?2k?)) = x?2k?. arcsin(sinx) = arcsin(sin(? ?x+2k?)) = ? ?x+2k?. arccosx existe si et seulement si x est dans [?1,1].
  • Comment calculer l'arc sinus ?

    La règle de la fonction arc sinus de base est f(x)=arcsin(x). f ( x ) = arcsin ? On note aussi cette fonction f(x)=sin?1(x).
  • Quand utiliser Arc sinus ?

    Les relations Arcsinus, Arccosinus et Arctangente permettent de calculer la valeur d'un angle aigu d'un triangle rectangle dont on connaît les côtés. Voici un autre type d'exercice que l'on peut résoudre gr? aux relations trigonométriques.
  • La dérivée f' de la fonction f(x)=arcsin x est : f'(x) = 1 / ?(1 - x²) pour tout x dans ]-1,1[. Pour démontrer ce résultat nous allons utiliser la dérivée la fonction de la fonction réciproque .
Exo7

Trigonométrie hyperbolique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exercice 1***ITDomaine de définition et calcul des fonctions suivantes :

1.x7!sin(arcsinx),

2.x7!arcsin(sinx),

3.x7!cos(arccosx),

4.x7!arccos(cosx),

5.x7!tan(arctanx),

6.x7!arctan(tanx).

2.

Calculer arctan x+arctan1x

pourxréel non nul. 3. Calculer cos (arctana)et sin(arctana)pouraréel donné. 4. Calculer ,pour aetbréels tels queab6=1, arctana+arctanben fonction de arctana+b1ab(on étudiera d"abord cos(arctana+arctanb)et on distinguera les casab<1,ab>1 eta>0,ab>1 eta<0).

Rsin2x

0arcsinpt dt+Rcos2x

0arccospt dt.

1.f1(x) =arcsinxp1+x2

2.f2(x) =arccos1x21+x2

1

3.f3(x) =arcsinp1x2arctan

q1x1+x

4.f4(x) =arctan12x2arctanxx+1+arctanx1x

12 +arctan15 +arctan18

2+arctan22

2+:::+arctan2n

(Utiliser l"exercice 2 4)) f(x) = (x21)arctan12x1; et on appelle(C)sa courbe représentative dans un repère orthonormé. 1.

Quel est l"ensemble de définition Ddef?

2. Exprimer ,sur Dnf0g, la dérivée defsous la forme :f0(x) =2xg(x). 3. Montrer que : 8x2R;2x44x3+9x24x+1>0 et en déduire le tableau de variation deg. 4.

Dresser le tableau de v ariationde f.

2. En déduire la v aleurde un=20th(20x)+21th(21x)++2nth(2nx)pournentier naturel non nul etx réel non nul donnés puis calculer la limite de(un). 1. sin (2arcsinx), 2

2.cos (2arccosx),

3. sin

2arccosx2

4. ln (px

2+1+x)+ln(px

2+1x),

5. ar gsh x212x 6. ar gch(2x21), 7. ar gth qchx1chx+1 8. ch(lnx)+sh(lnx)x 1. ch x=2, 2. arcsin (2x) =arcsinx+arcsin(xp2), 3.

2 arcsinx=arcsin(2xp1x2).

Correction del"exer cice1 Narcsinxexiste si et seulement sixest dans[1;1]. Donc, sin(arcsinx)existe si et seulement sixest dans[1;1]

et pourxdans[1;1], sin(arcsinx) =x. arcsin(sinx)existe pour tout réelxmais ne vautxque sixest dansp2 ;p2 . • S"il existe un entier relatifktel quep2 +2kp6x6x2kp et donc arcsin(sinx) =arcsin(sin(x2kp)) =x2kp:

De plus, on ak6x2p+14

De plus,k6x2p14 arccos(cosx)existe pour tout réelxmais ne vautxque sixest dans[0;p]. • S"il existe un entier relatifktel

que 2kp6xPour tout réelx, tan(arctanx) =x. arctan(tanx)existe si et seulement sixn"est pas dansp2 +pZet pour cesx, il existe un entier relatifktel que p2 +kp.Correction del"exer cice2 N1.1ère solution. Posonsf(x) =arccosx+arcsinxpourxdans[1;1].fest définie et continue sur[1;1],

dérivable sur]1;1[. De plus, pourxdans]1;1[, f

0(x) =1p1x21p1x2=0:

Doncfest constante sur[1;1]et pourxdans[1;1],f(x) =f(0) =p2

8x2[1;1];arccosx+arcsinx=p2

:2ème solution. Il existe un unique réelqdans[0;p]tel quex=cosq, à savoirq=arccosx. Mais alors,

arccosx+arcsinx=q+arcsin sin(p2 q) =q+p2 q=p2 (car p2 qest dans[p2 ;p2

2.1ère solution. Pourxréel non nul, posonsf(x) =arctanx+arctan1x

.fest impaire.fest dérivable surRet pour tout réelxnon nul,f0(x) =11+x21x

211+1x

2=0.fest donc constante sur]¥;0[et sur

]0;+¥[(mais pas nécessairement surR). Donc, pourx>0,f(x) =f(1) =2arctan1=p2 , et puisquef est impaire, pourx<0,f(x) =f(x) =p2 . Donc,

8x2R;arctanx+arctan1x

p2 six>0 p2 six<0=p2 sgn(x):4

2èmesolutionPourxréelstrictementpositifdonné, ilexisteununiqueréelqdans0;p2

telquex=tanq

à savoirq=arctanx. Mais alors,

arctanx+arctan1x =q+arctan1tanq =q+arctan tan(p2 q) =q+p2 q=p2 (carqetp2 qsont éléments de0;p2 3. cos

2(arctana) =11+tan2(arctana)=11+a2. De plus , arctanaest dans]p2

;p2 [et donc cos(arctana)>0. On en déduit que pour tout réela, cos(arctana) =1p1+a2puis sin(arctana) =cos(arctana)tan(arctana) =ap1+a2:

8a2R;cos(arctana) =11+a2et sin(arctana) =ap1+a2:4.D"après 3),

cos(arctana+arctanb) =cos(arctana)cos(arctanb)sin(arctana)sin(arctanb) =1abp1+a2p1+b2;

ce qui montre déjà , puisqueab6=1, que cos(arctana+arctanb)6=0 et donc que tan(arctana+arctanb)

existe. On a immédiatement, tan(arctana+arctanb) =a+b1ab:

Maintenant, arctana+arctanbest dansp;p2

[p2 ;p2 [p2 ;p.

1er cas.Siab<1 alors cos(arctana+arctanb)>0 et donc arctana+arctanbest dansp2

;p2 . Dans ce cas, arctana+arctanb=arctana+b1ab.

2ème cas.Siab>1 alors cos(arctana+arctanb)<0 et donc arctana+arctanbest dansp;p2

[p2 ;p.

Si de plusa>0, arctana+arctanb>p2

et donc arctana+arctanbest dansp2 ;p. Dans ce cas, arctana+arctanbpest dansp2 ;p2 et a même tangente que arctana+b1ab. Donc, arctana+ arctanb=arctana+b1ab+p. Sia<0, on trouve de même arctana+arctanb=arctana+b1abp.

En résumé,

arctana+arctanb=8 >:arctan a+b1absiab<1 arctan a+b1ab+psiab>1 eta>0 arctan a+b1abpsiab>1 eta<0:Correction del"exer cice3 Nch(a+b) =chachb+shashbet ch(ab) =chachbshashb; sh(a+b) =shachb+chashbet sh(ab) =shachbshbcha th(a+b) =tha+thb1+thathbet th(ab) =thathb1thathb:5

Deux démonstrations :

chachb+shashb=14 ((ea+ea)(eb+eb)+(eaea)(ebeb)) =12 (ea+b+eab) =ch(a+b): th(a+b) =sh(a+b)ch(a+b)=shachb+shbchachachb+shashb=tha+thb1+thathb

après division du numérateur et du dénominateur par le nombre non nul chachb. En appliquant àa=b=x,

on obtient :

8x2R;ch(2x) =ch2x+sh2x=2ch2x1=2sh2x+1;sh(2x) =2shxchxet th(2x) =2thx1+th2x:En additionnant entre elles les formules d"addition, on obtient les formules de linéarisation :

chachb=12 (ch(a+b)+ch(ab));shashb=12 (ch(a+b)ch(ab))et shachb=12 (sh(a+b)+sh(ab)); et en particulier ch

2x=ch(2x)+12

et sh2x=ch(2x)12 :Correction del"exer cice4 NPourxréel, on posef(x) =Rsin2x

0arcsinpt dt+Rcos2x

0arccospt dt.

La fonctiont7!arcsinptest continue sur[0;1]. Donc, la fonctiony7!Ry

0arcsinpt dtest définie et dérivable

sur[0;1]. De plus,x7!sin2xest définie et dérivable surRà valeurs dans[0;1]. Finalement, la fonction

x7!Rsin2x

0arcsinpt dtest définie et dérivable surR. De même, la fonctiont7!arccosptest continue sur[0;1].

Donc, la fonctiony7!Ry

0arccospt dtest définie et dérivable sur[0;1]. De plus, la fonctionx7!cos2xest

définie et dérivable surR, à valeurs dans[0;1]. Finalement, la fonctionx7!Rcos2x

0arccospt dtest définie et

dérivable surR. Donc,fest définie et dérivable surRet, pour tout réelx, f

0(x) =2sinxcosxarcsin(psin

2x)2sinxcosxarccos(pcos

2x) On note alors quefestp-pérodique et paire. Pourxélément de[0;p2 ],f0(x) =2sinxcosx(xx) =0.fest donc constante sur[0;p2 ]et pourxélément de[0;p2 ],f(x) =fp4 =R1=2

0arcsinpt dt+R1=2

0arccosptdt=R1=2

0p2 dt=p4 . Mais alors, par parité etp-périodicité,

8x2R;Rsin2x

0arcsinpt dt+Rcos2x

0arccospt dt=p4

:Correction del"exer cice5 N1.1ère solution.Pour tout réelx,px

2+1>px

2=jxjet donc1

2+1<1. Ainsif1est définie et

dérivable surR, impaire, et pour tout réelx, f

01(x) =1px

2+112 x2x(x2+1)px 2+1 1q

1x21+x2=11+x2=arctan0(x):

Donc il existe une constante réelleCtelle que pour tout réelx,f1(x) =arctanx+C.x=0 fournitC=0 et donc, 6

8x2R;arcsinxpx

2+1 =arctanx:2ème solution.Pourxréel donné, posonsq=arctanx.qest dansp2 ;p2 etx=tanq. xpx

2+1=tanqp1+tan2q=pcos

2qtanq=cosqtanq(car cosq>0)

=sinq et doncquotesdbs_dbs16.pdfusesText_22

[PDF] arcsin arccos arctan cours pdf

[PDF] arctan formule

[PDF] appréciation 3eme trimestre primaire

[PDF] y=ax+b signification

[PDF] je cherche quelqu'un pour m'aider financièrement

[PDF] recherche aide a domicile personnes agées

[PDF] aide personne agée offre d'emploi

[PDF] tarif garde personne agée ? domicile

[PDF] y=ax+b graphique

[PDF] ménage chez personnes agées

[PDF] garde personne agee a son domicile

[PDF] cherche a garder personne agee a domicile

[PDF] calcul arithmétique de base

[PDF] ax2 bx c determiner a b et c

[PDF] opération arithmétique binaire