[PDF] Math2 – Chapitre 3 Intégrales multiples





Previous PDF Next PDF



Résumé sur les Intégrales Impropres & exercices supplémentaires

Théor`eme 1 Une intégrale absolument convergente est convergente. 3. Intégrales Impropres des fonctions `a signe constant. Si f est négative sur I alors ?f 



Math2 – Chapitre 3 Intégrales multiples

Probl`eme – Pas d'analogue pour les fonctions de plusieurs variables! Page 6. Exemple: aire d'un disque. Aire d'un disque –.



SUR LES GENRES MULTIPLICATIFS DEFINIS PAR DES

DES INTEGRALES ELLIPTIQUES. SERGE OCHANINE Les genres elliptiques se trouvent ainsi ttroitement lies a la thiorie des S'-varietes spinorielles le .



SUR LES INTEGRALES PREMIERES DANS LA CLASSE DE

Dec 7 1999 SUR LES INTEGRALES PREMIERES. DANS LA CLASSE DE NILSSON. D'EQUATIONS DIFFERENTIELLES HOLOMORPHES. FRÉDÉRIC TOUZET. Abstract.



Sur les Equations Linéaires aux Différentielles Ordinaires et aux

coefficient de x'P dans le polynome Pi. Nous allons etudier la fagon dont se comportent les integrales de l'equation. (1) quand x croft indefiniment d'une 



Chapitre 7 : Intégrales généralisées

ex dx est forcément divergente puisque fait intervenir les deux extrémités. 2.2 Puissances. On veut intégrer une fonction du type P(x)/Q(x) o`u P et 



sur les intégrales orbitales tordues pour les groupes linéaires: un

logues aux germes de Shalika pour les groupes linéaires sous une hypothèse de ram- ification modérée. Ces formules se généralisent au cas où les intégrales 



2.2 Quelques propriétés des intégrales définies

(Intégrale définie) On suppose que la fonction réelle f: [a b] f(x)dx



CALCUL INTÉGRAL (Partie 1)

Au milieu du XIXe siècle les sciences sociales reprennent le mot l'intégrale de la fonction sur l'intervalle [-2 ; 1] et se note ? " + 1.



SUR LES INTEGRALES PREMIERES DE CERTAINS

SUR LES INTEGRALES PREMIERES DE CERTAINS. FEUILLETAGES ANALYTIQUES COMPLEXES par. Masakazu SUZUKI. INTRODUCTION. Soit Jt un feuillatage analytique complexe 

Math2 { Chapitre 3

Integrales multiples

3.1 {

Int egralesde Riemann (rapp elsde TMB)

3.2 {

Int egralesdoubles

3.3 {

Int egralestriples

3.4 {

Aire, volume, mo yenneet centre de masse

3.1 { Integrales de Riemann (rappels de TMB)

Dans cette section:

Subdivisions, somme de Riemann et integrale de Riemann d'une fonction d'une variable

Aire sous le graphe d'une fonction

Primitives et techniques d'integration

Subdivision, somme et integrale de Riemann

Rappels {Soitf:ra;bs ÑRune fonction d'une variable: subdivisiondera;bs:Sn taa0 a1 anbuR aa0 a nb a 1|x 1 a 2|x 2 a 3|x 3 a 4|x 4 a 5|x 5 somme de Riemann defaux pointsxiP rai1;ais: R pf;txiuq n¸ i1fpxiq:xfpxq a b integrale de Riemann defsurra;bs: b a fpxqdxlimnÑ8toutxiR pf;txiuqxfpxq a b si la limite existe, est nie, et ne depend pas desxi.

L'integrale donne l'aire sous le graphe

Rappels -

b a fpxqdxaire \algebrique" sous le graphe def b a |fpxq|dxaire sous le graphe def(positive) xyfpxq |f|f |f||f|Exemple:L'aire du disque se calcule comme une integrale:

AirepDq 2AirepDq 2»

1

1a1x2dxxy?1x2D

Primitives et techniques d'integration

Pour connaitre l'integral, il sut de connaitre une primitive: Uneprimitive defsurra;bsest une fonctionFderivable telle que F

1pxqfpxqpour toutxP ra;bs. On noteFpxq»

fpxqdx.

Theoreme fondamental:»b

a fpxqdxFpbqFpaq rFpxqsba:

Integration par changement de variable:xhptq»

fpxqdx» fhptqh1ptqdt; ouhest un dieomorphisme(bijection derivable avec reciproqueh1derivable).

Integration par parties:»

fpxqg1pxqdxfpxqgpxq » f

1pxqgpxqdx:Probleme {Pas d'analogue pour les fonctions de plusieurs variables!

Exemple: aire d'un disque

Aire d'un disque {

AirepDq 2AirepDq 2»

1

1a1x2dxCalcul par changement de variable:xsintpourtP r2

;2 s, car?1x2cost.Alorsdxcost dtet

AirepDq 2»

{2 {2cos2t dt 2» {2 {2cosp2tq 12 dt 12 sinp2tq t {2 {202 02

3.2 { Integrales doubles

Dans cette section:

Subdivisions des domaines du plan

Sommes de Riemann des fonctions de deux variables

Integrale double

Volume sous le graphe d'une fonction

Theoreme de Fubini

Theoreme du changement de variables

Subdivisions d'un domaine du plan

SoitD€R2un ensemble borne, avec bordBDlisse(au moins par morceaux). Denition {Pour tout¡0, on appellesubdivision deD l'ensembleSdes carresKide cotedu plan qui couvrentDdans n'importe quel grillage de pas.En particulier, on considere deux recouvrements: una l'exterieurSext, una l'interieurSint.S intS extD BDPuisqueDest borne, les subdivisions contiennent un nombre ni de carres, et on aSint€Sext. Les carres dansSextzSintcouvrent exactement le bordBD. Sommes de Riemann d'une fonction de deux variables

Soitf:DÝÑRune fonction de deux variables.

Denition {Pour tout choix de pointspxi;yiq PKiXD, on appellesommes de Riemann defassociees aux subdivisions S ext{int et aux pointstpxi;yiqules sommes R ext{int pf;tpxi;yiquq ¸ K iPSext{int fpxi;yiq2; ou chaque termefpxi;yiq2 represente levolume algebrique(=volume) du parallelepipede de base K iet hauteurfpxi;yiq. xyfpx;yqD

Integrale double

Theoreme {Si les limiteslimÑ0Rext{int

pf;tpxi;yiquqexistent et elles sont independantes du choix des pointspxi;yiq PKiXD, alors elles coincident.Denition {Dans ce cas: on appelleintegrale double defsurDcette limite: D fpx;yqdx dylimÑ0Rext{int pf;tpxi;yiquq: on dit quefest integrable surDselon Riemannsi l'integrale¼ D fpx;yqdx dyest nie (= nombre, pas8).Proposition {Toute fonction f continueest integrable selon Riemann sur un ensemble D bornea bord lisse(par morceaux).

Signication geometrique de l'integrale double

Corollaire {

D fpx;yqdx dyvolume \algebrique" sous le graphe de f . D |fpx;yq|dx dyvolume sous le graphe de f .yz x positifnegatiff |f||f|f

Exemple 1: volume d'une boule

Volume d'une boule {Le volume de la boule

est deux fois le volume de la demi-boule B qui se trouve sous le graphe de la fonction za1x2y2: yz xpx;yqzax 2y2B

On a alors

VolpBq 2¼

Da1x2y2dx dy

Proprietes des integrales doubles

Proprietes {1qPour tout;PR, on a

D fgdx dy¼ D f dx dy¼ D g dx dy:2qSi DD1YD2et D1XD2= courbe ou point ouH, alors D fpx;yqdx dy¼ D

1fpx;yqdx dy¼

D

2fpx;yqdx dy:3q¼

D D D D gpx;yqdx dy:

Theoreme de Fubini sur un rectangle

Theoreme de Fubini sur un rectangle {Soit f:DÝÑRune fonction continue et D ra;bs rc;dsun rectangle. Alors on a D fpx;yqdx dy» b a »d c fpx;yqdy dx d c »b a fpx;yqdx dyNotation { b a dx» d c dy fpx;yq » b a »d c fpx;yqdy dxCorollaire { ra;bsrc;dsf

1pxqf2pyqdx dy»

b a f

1pxqdx»

d cquotesdbs_dbs46.pdfusesText_46
[PDF] Les intervalles (ensemble de nombre)

[PDF] Les intervalles à faire pour Demain

[PDF] Les intervalles avec fonction

[PDF] les intervalles cm2

[PDF] Les intervalles de fluctuation

[PDF] Les intervalles de R

[PDF] Les intervalles de R1

[PDF] Les intervalles de R3

[PDF] les intervalles de réel

[PDF] Les intervalles et les limites d'une fonction

[PDF] les intervalles maths

[PDF] les intervalles niveau seconde

[PDF] les invasions barbares cm1 evaluation

[PDF] les invasions barbares cm1 leçon

[PDF] les inventions du 19ème siècle cm2