[PDF] STATISTIQUE : ESTIMATION Estimation de la variance quand





Previous PDF Next PDF



Quelques rappels sur les intervalles de confiance

Quand la variance est connue l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi normale s'écrit donc au niveau 1?? sous la forme 



Estimations et intervalles de confiance

tervalle de confiance et donc de préciser l'incertitude sur ces esti- mations : intervalle de confiance d'une proportion d'une moyenne si la variance est 



STATISTIQUES IUT DEUXIEME PARTIE

Sa variance doit tendre vers 0 : V(t) ? 0 lorsque n ? ? t1 et t2 sont les limites de l'intervalle de confiance ? est le seuil de risque de ...



MODULE 2 : Estimation par intervalle de confiance

Les paramètres inconnus à estimer seront successivement la moyenne la variance



Intervalles de confiance et tests dans le cas de changement de

Intervalle de confiance de la variance (de l'écart-type). Les limites de l'intervalle de confiance de 03C32y sont : x203B1/2 étant le quantile d'ordre a/2 de la 



STATISTIQUE : ESTIMATION

Estimation de la variance quand la moyenne est inconnue. 18. 4. Comparaison de moyennes et de variances. 18. 4.a. Intervalle de confiance de la différence 



Résumé Intervalle de confiance.pdf

Intervalle de confiance de la variance 2 ? ? est connu ? est inconnu m est connue m est inconnu. La statistique est : )10(. Normle.



Intervalles de confiance

— section 2 : c'est un catalogue des IdC pour moyenne et variance dans le cas gaussien. Il faut retenir que dans ce cadre



Estimation et intervalle de confiance

08?/10?/2007 = variance de cette viscosité. Fréquence allélique : p = probabilité qu'un all`ele pris au hasard dans la popula- tion soit un A.



Procdure de tlchargement du logiciel R

la variance échantillonnale S2). a) Test bilatéral et intervalle de confiance. L'intervalle de confiance et le test bilatéral pour l'étendue moyenne ? 



[PDF] Quelques rappels sur les intervalles de confiance - Cedric-Cnam

Quand la variance est connue l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi normale s'écrit donc au niveau 1?? sous la forme 



[PDF] Estimations et intervalles de confiance

Résumé Cette vignette introduit la notion d'estimateur et ses propriétés : convergence biais erreur quadratique avant d'aborder l'estimation



[PDF] Estimation par intervalle de confiance

Intervalle de confiance pour une proportion Estimation et intervalle de confiance dans le cas d'une population d'effectif fini



[PDF] Calcul dun intervalle de confiance pour la moyenne dans une

Cet essai a pour objectif de calculer un intervalle de confiance pour la moyenne µ `a 100(1??) dans un plan de sondage aléatoire simple ainsi que dans 



[PDF] Intervalles de confiance - Université de Rennes

Intervalles de confiance Les probabilités s'attachent `a décrire le comportement (souvent asymptotique) de fonction- nelles de variables aléatoires dont on 



[PDF] : tdr27 ————— Intervalles de Confiance —————

b) Calculer la moyenne et la variance estimées de la distance entre les domiciles des époux au moment du mariage c) Donner l'intervalle de confiance de la 



[PDF] Chapitre 5 - Estimation par intervalles de confiance - UFR SEGMI

3 2 Intervalles de confiance d'une proportion 3 3 Précision dans l'estimation quantitative variance ?2 ?l'intervalle de confiance au niveau (1??)



[PDF] TP N° 54 Estimation dun intervalle de confiance - CAB INNOVATION

C'est par exemple le cas d'une loi binomiale de paramètres (n p) qui peut être approximée par une loi normale de moyenne m = np et de variance ?2 = np(1-p) si 



[PDF] Estimation par Intervalle de Confiance

2 1 Intervalles de confiance de niveau 95 pour la moyenne (panneau gauche) et la variance (panneau droit) dpune population normale standard



[PDF] Intervalles de confiance

1 août 2017 · Pierre Duchesne Intervalles de confiance Page 8 Échantillons Estimateurs Variance Ecart-type Borne inf Borne sup Inclus?

  • Comment calculer l'intervalle de confiance de variance ?

    Quand la variance est connue, l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi normale s'écrit donc au niveau 1?? sous la forme suivante : xn est la réalisation de Xn sur l'échantillon. Remarque : si ? = 5% , le fractile d'ordre 0,975 de la loi normale centrée réduite correspond à 1,96.
  • Comment calculer l'intervalle de confiance ?

    Pour un sondage de N personnes ayant pour résultat la fréquence f et la probabilité pp alors l'intervalle de confiance à 95% se calcule de la façon suivant : [p?1.96?f(1?p)/?n,p+1.96?p(1?p)/?n]. Avec 1.96 la valeur du 2.5 percentile de la distribution normale (pour 99%, la valeur serait 2.58).
  • Comment expliquer l'intervalle de confiance ?

    En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l'on cherche à estimer à l'aide de mesures prises par un procédé aléatoire.
  • L'Intervalle de Confiance à 95% est l'intervalle de valeur qui a 95% de chance de contenir la vraie valeur du paramètre estimé. Le seuil de 95% signifie qu'on admet un risque d'erreur de 5%: on peut réduire ce risque (par exemple à 1%), mais alors l'Intervalle de Confiance sera plus large, donc moins précis.

STATISTIQUE : ESTIMATION

Préparation à l"Agrégation Bordeaux 1

Année 2012 - 2013

Jean-Jacques Ruch

Table des Matières

Chapitre I. Estimation ponctuelle5

1. Définitions5

2. Critères de comparaison d"estimateurs 6

3. Exemples fondamentaux 6

3.a. Estimation dem6

3.b. Estimation de2en supposantmconnu 7

3.c. Estimation de2lorsquemest inconnu 7

4. Cas particulier de la loi normale 8

5. Construction d"estimateur par la méthode du maximum de vraisemblance 11

5.a. Cas discret11

5.b. Cas à densité12

Chapitre II. Estimation par intervalle13

1. Définition d"une région de confiance 13

2. Construction de régions de confiance 13

3. Exemples classiques d"estimation par intervalle 15

3.a. Estimation de la moyenne quand la variance est connue 15

3.b. Estimation de la moyenne quand la variance est inconnue 15

3.c. Estimation de la variance quand la moyenne est connue 16

3.d. Estimation de la variance quand la moyenne est inconnue 18

4. Comparaison de moyennes et de variances 18

4.a. Intervalle de confiance de la différence de deux moyenne 18

4.b. Intervalle de confiance du rapport de deux variances 20

5. Estimation d"une proportion 20

5.a. Estimation ponctuelle 21

5.b. Estimation par intervalle 21

5.c. Méthode du Bootstrap 22

3

CHAPITRE I

Estimation ponctuelle

En statistique, comme dans la théorie des probabilités le hasard intervient fortement. Mais dans la théorie

des probabilités, on suppose la loi connue précisément et on cherche à donner les caractéristiques de la

variable qui suit cette loi. L"objectif de la statistique est le contraire : à partir de la connaissance de la

variable, que peut-on dire de la loi de cette variable?

1. Définitions

SoitXune variable aléatoire dont la densité de probabilitéf(x;)dépend d"un paramètreappartenant

àIR. A l"aide d"un échantillon issu deX, il s"agit de déterminer au mieux la vraie valeur0de. On

pourra utiliser deux méthodes : -estimation ponctuelle: on calcule une valeur vraisemblable^de0

-estimation par intervalle: on cherche un intervalle dans lequel0se trouve avec une probabilité élevée.

Définition 1.Unn-échantillondeXest unn-uplet(X1;X2;:::;Xn)tel que lesXkont la même loi queXet sont indépendantes.

Uneréalisation de l"échantillonest alors unn-uplet(x1;x2;:::;xn)de valeurs prises par l"échantillon.Définition 2.Unestatistiquede l"échantillon est une variable aléatoire'(X1;X2;:::;Xn)où'est

une application deRndansR. UnestimateurTdeest une statistique à valeurs dansI. Uneestimationest la valeur de l"estimateur correspondant à une réalisation de l"échantillon.Exemple:X n=1n n X k=1X kest un estimateur de l"espérance mathématique. Définition 3.Lebiaisde l"estimateurTdeestE[T]0. S"il est nul, on dit queTest un estimateur sans biais. L"estimateurTnestasymptotiquement sans biaissilimE[Tn] =0.On note souvent le biaisb(T). Définition 4.L"estimateur est ditconvergentsi la suite(Tn)converge en probabilité vers0:

8" >0;P(jTn0j> ")!n!+10:

On parle d"estimateurfortement convergentlorsqu"on a convergence presque sûre.D"après Bienaymé-Tchebychev pour qu"un estimateur asymptotiquement sans biais soit convergent il

suffit que

Var(Tn)!n!+10:

5

6Chapitre I. Estimation ponctuelle

2. Critères de comparaison d"estimateurs

Un bon critère de comparaison est lerisque quadratique. Définition 5.SoientTun estimateur de. Le risque quadratique est défini par R(T;) =E[(T)2]On peut alors comparer deux estimateurs. Définition 6.On dit queT1est unmeilleur estimateurqueT2si

82I; R(T1;)R(T2;)

et

92I; R(T1;)< R(T2;):Un estimateur est ditadmissibles"il n"existe pas d"estimateur meilleur.

L"erreur quadratique moyenne deTse décompose en deux termes, le carré du biais et la variance deT:

E[(T)2] =b2(T) +Var(T):

Cette décomposition permet de se ramener à une discussion sur la variance pour les estimateurs sans

biais de. Définition 7.SoientT1etT2deux estimateurs sans biais de. On dit queT1est unplus efficace queT2si

82I;Var(T1)Var(T2)

et

92I;Var(T1)

Var(T1)Var(T2):

3. Exemples fondamentaux

SoitXune variable aléatoire telle queE[X] =met Var(X) =2.

3.a. Estimation dem.

Théorème 8.La moyenne empiriqueX

n=1n n X k=1X kest un estimateur sans biais et convergent dem.On a E[X n] =1n n X k=1E[Xk] =met Var(X n) =1n 2n X k=1Var[Xk] =2n !n!+10:

D"après la loi forte des grands nombresX

nest même fortemement convergent. Il est possible de déterminer la loi asymptotique de la moyenne empirique.

Jean-Jacques Ruch

3.Exemples fondamentaux7

Proposition 9.Sinest assez grand on peut utiliser l"approximation normale (lorsqueXadmet un moment d"ordre2)X nL N(m;2=n):C"est une conséquence du TCL qui nous assure que pn(X nm)L!n!+1N(0;2):

3.b. Estimation de2en supposantmconnu.

Théorème 10.Lorsquemest connu

S 2n=1n n X k=1(Xkm)2 est un estimateur sans biais et convergent de2.On a

E[S2n] =E"

1n n X k=1(Xkm)2# 1n n X k=1Var(Xk) =2 Par ailleurs, les variables(Xkm)2étant indépendantes :

Var(S2n) =1n

2n X k=1Var((Xkm)2) =1n

E[(Xm)4]E[(Xm)2]2=1n

44
aveck=E((Xm)k).

DoncS2nest un estimateur convergent. La loi forte des grands nombres appliquée aux variables(Xkm)2

entraîne même la convergence presque sûre vers2. Comme dans le cas de la moyenne empirique le TCL nous permet de déterminer la loi asymptotique de S

2n; on a lorsquenest assez grand :

S

2nL N(2;(44)=n):

3.c. Estimation de2lorsquemest inconnu.

En général on ne connaît pasm; on le remplace par un estimateur et on introduit la variance empirique

associée :S 2n=1n n X k=1(XkX n)2:

Théorème 11.La variance empiriqueS

2nest un estimateur biaisé et convergent de2. Il est asymptotique-

ment sans biais.On a E[S

2n] =1n

n X k=1E(X2k)E[X n2] =1n (n(m2+2))(m2+2n ) =n1n 2:

Jean-Jacques Ruch

8Chapitre I. Estimation ponctuelle

D"autre part, on peut montrer que :

Var(S

2n) =1n

442n

2424+1n

3434!0

aveck=E((Xm)k). L"estimateur est donc convergent.

Le résultat précédent et le lemme de Slutsky (Probabilité 2, Jean-Yves Ouvrard, p. 347) permet de

déterminer la loi asymptotique deS 2n:S

2nL N(2;(44)=n):

Théorème 12.La variance empirique corrigée c

S2n=1n1n

X k=1(XkX n)2: est un estimateur sans biais et convergent de2.Cela se montre facilement en remarquant que c

S2n=nn1S

2n:

4. Cas particulier de la loi normale

On suppose dans ce paragraphe queXsuit la loi normaleN(m;2). On sait queX n=1n n X k=1X ksuit alors la loi normaleN(m;2=n), ce qui confime que c"est un estimateur sans biais, convergent dem.

Les résultats obtenus au paragraphe précédent pour l"estimation de2sont encore valables; en particulier

on a :

E(S2n) =2et Var(S2n) =2(n1)n

24

En effet, calculonsk

k=E((Xm)k) =1p2Z +1 1 (xm)kexp (xm)22 dx 1p2Z +1 1 (p2u)kexp(u2)p2duen posantx=mp2u = 0sikest impair.

Lorsquek= 2pest pair on obtient

2p=2p2pp

Z +1 1 u2pexp(u2)du=2p+12pp Z +1 0 u2pexp(u2)du 2p2pp Z +1 0 vp1=2exp(v)dven posantu=pv 2p2pp (p+ 1=2) =(2p)!2 p(p!)2p et donc

Var(S2n) =1n

442n

2424+1n

3434=2(n1)n

24

Jean-Jacques Ruch

4.Cas particulier de la loi normale9

Définition 13.SoientX1;:::;Xn,nvariables aléatoires indépendantes identiquement distribuées de

loiN(0;1). La loi du2àndegrés de liberté est la loi de la variable aléatoire 2n=nX k=1X 2k:

La densité de cette loi est donnée par :

f

2n(u) =12(n=2)

u2 n=21exp u2 1 u>0 et sa fonction caractéristique par

2n(t) =1(12it)n=2f

2k Pour déterminer la densité on peut remarquer que : siUsuit une loiN(0;1)alors on a pourt >0

P(U2t) =P(tUt) =FU(pt)FU(pt)

et par conséquent f

U2(t) =12

pt fU(pt) +12 pt fU(pt) =1pt fU(pt) =1p2texp t2 Ensuite on obtient le résultat général par récurence. Théorème 14.Soit(X1;:::;Xn)unnéchantillon de le loiN(0;1). Les variables aléatoires pnX netnX k=1(XkX n)2=nS

2n= (n1)cS2n

sont indépendantes et suivent respectivement la loi normale réduite et la loi du2à(n1) degrés de liberté.

Jean-Jacques Ruch

10Chapitre I. Estimation ponctuelle

Démonstration.Montrons queX

netnX k=1(XkX n)2sont indépendantes. On a 0 B BB@X n X 1X n... X nX n1 C

CCA=A0

B @X 1... X n1 C

AoùA=0

B

BBBBB@1n

1n 1n n1n 1n 1n 1n n1n .........1n 1n 1n n1n 1 C

CCCCCA

Le vecteur aléatoire

0 B @X 1... X n1 C Aest gaussien de loiN(0;In)oùInest la matrice identité d"ordren.

Par conséquent, le vecteur

0 B BB@X n X 1X n... X nX n1 C

CCA=A0

B @X 1... X n1 C

Aest également gaussien de loiN(0;AInAt) =

N(0;AAt). Or

AA t=0 B

BBBBB@1n

0 00 0 n1n 1n 1n 01n n1n ............1n 01n 1n n1n 1 C

CCCCCA

donc la variableX nest indépendante du vecteur0 B @X 1X n... X nX n1 C

Aet donc denX

k=1(XkX n)2.

CommeX

nsuit la loiN(0;1=n)on en déduit quepnX nsuit la loiN(0;1).

MontronsnS

2n=nX k=1(XkX n)2suit la loi du2à(n1)degrés de liberté. On a 0 B @X 1X n... X nX n1 C A=B0 B @X 1... X n1 Cquotesdbs_dbs35.pdfusesText_40

[PDF] intervalle de confiance de l'écart type

[PDF] intervalle de confiance d'une moyenne

[PDF] intervalle de confiance loi normale centrée réduite

[PDF] intervalle de confiance student

[PDF] intervalle de confiance d'une moyenne excel

[PDF] unité commerciale définition

[PDF] climat définition cycle 3

[PDF] definition de meteorologie

[PDF] unité commerciale physique et virtuelle complémentaire

[PDF] definition meteo

[PDF] dispense cap petite enfance

[PDF] deaes

[PDF] formule variance

[PDF] problème du second degré seconde

[PDF] bpjeps