[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Estimation

comme estimation ponctuelle de l'écart-type de la population afin d'estimer la moyenne par intervalle de confiance. Estimation par intervalle de confiance.



Estimateurs et intervalles de confiance de lécart-type dune loi

Estimateurs et intervalles de confiance de l'écart-type d'une loi normale et de la moyenne d'une loi exponentielle. Revue de statistique appliquée tome 9



Estimations et intervalles de confiance

mations : intervalle de confiance d'une proportion d'une moyenne l'écart-type



Intervalles de confiance

Donner une estimation et un intervalle de confiance pour m. 2.2 Estimation de l'écart-type. 2.2.1 si la moyenne est connue. La statistique T = 1.



Chapitre 5 - Estimation par intervalles de confiance

2.5 Variable normale d'écart-type inconnu. 3. Intervalles 3.2 Intervalles de confiance d'une proportion ... normal de moyenne µ et d'écart-type ? / ?n.



Estimations

Le nombre ? n n ? 1 ?? est une estimation ponctuelle de l'écart-type ?. III. Estimation par intervalle de confiance. 1) Moyenne. On consid`ere une population 



Cours de Statistiques inférentielles

µ et d'écart type ? (nombre strictement positif car il s'agit de la racine L'intervalle de confiance pour la moyenne d'une population de variance ?2 ...



ESTIMATION DE PARAMÈTRES

Dans le cas d'un caractère quantitatif la moyenne m et l'écart-type ?pop d'une population. par un intervalle (estimation par intervalle de confiance).



CORRIGE DES EXERCICES : Estimation ponctuelle et estimation

la variance du temps des individus âgés de 20 à 30 ans est estimée à 10 3455 et son écart-type à 101



[PDF] Estimations et intervalles de confiance

Estimations et intervalles de confiance Résumé Cette vignette introduit la notion d'estimateur et ses propriétés : convergence biais erreur quadratique 



[PDF] Quelques rappels sur les intervalles de confiance - Cedric-Cnam

Quand la variance est connue l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi normale s'écrit donc au niveau 1?? sous la forme 



[PDF] Intervalles de confiance - Université de Rennes

Donner `a Cruella un intervalle de confiance pour le poids de Pamela de probabilité de confiance 095 2 1 2 si l'écart-type est inconnu On utilise le fait que 



[PDF] Calcul dun intervalle de confiance pour la moyenne dans une

Cet essai a pour objectif de calculer un intervalle de confiance pour la moyenne µ `a 100(1??) dans un plan de sondage aléatoire simple ainsi que dans 



[PDF] Chapitre 5 - Estimation par intervalles de confiance - UFR SEGMI

Intervalles de confiance d'une moyenne 2 1 Variable normale d'écart-type connu 2 2 Variable quantitative quelconque d'écart-type connu



[PDF] Estimateurs et intervalles de confiance de lécart-type dune loi

Estimateurs et intervalles de confiance de l'écart-type d'une loi normale et de la moyenne d'une loi exponentielle Revue de statistique appliquée tome 9 



[PDF] Estimation par intervalle de confiance

La variable aléatoire X suit une loi normale N(m;?) Les paramètres à estimer sont la moyenne m et l'écart-type ? L'estimateur sans biais de la moyenne m est 



[PDF] Intervalle de confiance dune moyenne

L'écart type est de 13 heures On veut connaitre la moyenne générale du temps de sommeil chez tous les enfants du département



[PDF] Les statistiques descriptives et les intervalles de confiance - divatfr

Intervalle de confiance v a continues v a discrètes Quelques conventions • Grands échantillons : 1 moyenne (± écart-type) 2 moyenne (minimum-maximum)



Estimation PDF PDF Intervalle de confiance Écart type - Scribd

2 Estimer la moyenne et l'écart-type pour le taux de cholestérol dans toute l'entreprise 3 Déterminer un intervalle de confiance pour la moyenne

  • Comment calculer l'intervalle de confiance de l'écart-type ?

    Elle se calcule sur la base de cette formule : Za/2 x ?/?(n). Za/2 est le coefficient de confiance, avec a = degré de confiance, ? = écart type et n = taille de l'échantillon. En plus court, il faut multiplier la valeur critique par l'erreur type.
  • Comment calculer l'intervalle de confiance ?

    Pour un sondage de N personnes ayant pour résultat la fréquence f et la probabilité pp alors l'intervalle de confiance à 95% se calcule de la façon suivant : [p?1.96?f(1?p)/?n,p+1.96?p(1?p)/?n]. Avec 1.96 la valeur du 2.5 percentile de la distribution normale (pour 99%, la valeur serait 2.58).
  • Comment expliquer l'intervalle de confiance ?

    En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l'on cherche à estimer à l'aide de mesures prises par un procédé aléatoire.
  • L'Intervalle de Confiance à 95% est l'intervalle de valeur qui a 95% de chance de contenir la vraie valeur du paramètre estimé. Le seuil de 95% signifie qu'on admet un risque d'erreur de 5%: on peut réduire ce risque (par exemple à 1%), mais alors l'Intervalle de Confiance sera plus large, donc moins précis.

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p).quotesdbs_dbs35.pdfusesText_40
[PDF] intervalle de confiance d'une moyenne

[PDF] intervalle de confiance loi normale centrée réduite

[PDF] intervalle de confiance student

[PDF] intervalle de confiance d'une moyenne excel

[PDF] unité commerciale définition

[PDF] climat définition cycle 3

[PDF] definition de meteorologie

[PDF] unité commerciale physique et virtuelle complémentaire

[PDF] definition meteo

[PDF] dispense cap petite enfance

[PDF] deaes

[PDF] formule variance

[PDF] problème du second degré seconde

[PDF] bpjeps

[PDF] moyenne nationale bac francais 2017