[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



Chapitre 1 Suites réelles et complexes

On dit qu'une suite (un)n?N d'éléments de K converge vers l ? K si : Soient (un) et (vn) deux suites convergentes de limites respectives l et.



Suites 1 Convergence

(c) Montrer que (un) est croissante En déduire que les suites (un) et (vn) sont convergentes et quelles ont même limite. Indication ?. Correction ?.



Complément sur les suites. Suites adjacentes - Lycée dAdultes

27 févr. 2017 et vn = 1 n sont deux suites adjacentes car la pre- mière est croissante



Suites

Montrer que (un) et (vn) convergent vers. 1. Correction ?. [005234]. Exercice 16 **. Montrer que si les suites (u2.



Baccalauréat Métropole 13 septembre 2021 J2 ÉPREUVE D

13 sept. 2021 (un ?vn) = 0. Les deux suites (un) et (vn) étant convergentes on en déduit que lim n?+?.



LES SUITES (Partie 2)

Soit (un) et (vn) deux suites définies sur ?. resserrent autour de la suite (vn) à partir d'un certain rang pour la faire converger vers la même limite.



Corrigé du devoir maison no 1

et vn+1 = un + vn. 2 . (a) Tout d'abord on remarque que les suites un et vn sont `a termes positifs (ceci se montre aisément par récurrence).



Suites monotones suites adjacentes. Approximation dun nombre

Définition 2 : Deux suites réelles (un) et (vn) sont dites adjacentes si l'une est croissante l'autre dé- croissante et si leur différence converge vers 0.



Suites numériques

sinon la suite (vn) n'est ni croissante ni décroissante. ?? démonstration. 2) Somme de termes consécutifs. Théor`eme 2 :.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

(vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA. Page 2. Yvan Monka – 

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
nn nn n nn n u u u 0 =3×5 0 =3 1

1,04500520u=´=

2

1,04520540,80u=´=

3

1,04540,80562,432 u=´=

1 1,04 nn uu 0

500u=5001, 04

n n u=´ u n =u 0 ´q n 5

Démonstration :

La suite géométrique (u

n ) de raison q et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite géométrique

Vidéo https://youtu.be/wUfleWpRr10

Considérons la suite géométrique (u

n ) tel que et . Déterminer la raison et le premier terme de la suite (u n

Les termes de la suite sont de la forme .

Ainsi et

Ainsi : et donc .

On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui

élevé au cube donne 64.

Ainsi

Comme , on a : et donc : .

2) Variations

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme non nul u 0

Pour :

- Si q > 1 alors la suite (u n ) est croissante. - Si 0 < q < 1 alors la suite (u n ) est décroissante.

Pour :

- Si q > 1 alors la suite (u n ) est décroissante. - Si 0 < q < 1 alors la suite (u n ) est croissante.

Démonstration dans le cas où u

0 > 0 : - Si q > 1 alors et la suite (u n ) est croissante. - Si 0 < q < 1 alors et la suite (u n ) est décroissante. u n+1 =q´u n u 1 =q´u 0 2 2100
uquqququ=´=´´=´ 23
3200
uquqququ=´=´´=´ 1 100
nn nn uquqquq u u 4 =8 u 7 =512 u n =q n ´u 0 u 4 =q 4 ´u 0 =8 u 7 =q 7 ´u 0 =512 u 7 u 4 q 7 ´u 0 q 4 ´u 0 =q 3 u 7 u 4 512
8 =64 q 3 =64 q=64 3 =4 q 4 ´u 0 =8 4 4 ´u 0 =8 u 0 1 32
u 0 >0 u 0 <0 uquotesdbs_dbs46.pdfusesText_46
[PDF] les suites (Vn) et (Un)

[PDF] Les Suites - DM

[PDF] Les suites 1

[PDF] Les Suites : arithmetiques, géométriques et arithmetico-geometrique

[PDF] Les suites : les couples de lapins

[PDF] Les suites : vrai ou faux

[PDF] Les Suites Arithmético - Géometrique

[PDF] Les suites arithmético géométriques

[PDF] les Suites Arithmetique

[PDF] Les suites arithmétique ou géométriques

[PDF] Les suites arithmétiques

[PDF] les suites arithmétiques ? rendre jeudi

[PDF] Les suites arithmétiques avec sigma

[PDF] les suites Arithmétiques et géométrique DM

[PDF] les suites arithmétiques et géométriques