[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.



LES SUITES

- Si une suite décroissante est non minorée alors elle tend vers ?? . Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



SUITES NUMERIQUES I) Définition dune suite II) Sens de variation

Définition : Lorsqu'une suite est définie par son premier terme et par une relation qui permet de calculer tous les termes successifs de proche en proche on 



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



LES SUITES (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 1). I. Raisonnement par récurrence. 1) Le principe.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTIQUES. ET SUITES GÉOMÉTRIQUES. Tout le cours en vidéo : https://youtu.be/ 



LES SUITES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 :.



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DE SUITES. I. Limite d'une suite géométrique. 1) Suite (qn).



Maths vocab in English

maths : les deux sont corrects toutefois math relève de l'anglais américain et maths de l'anglais britannique. Qu'il y ait un s ou non

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
nn nn n nn n u u u 0 =3×5 0 =3 1

1,04500520u=´=

quotesdbs_dbs46.pdfusesText_46
[PDF] les suites en terminal S

[PDF] Les suites en terminale

[PDF] les suites en ts

[PDF] Les suites et e

[PDF] Les suites et encadrement

[PDF] Les suites et la convergence

[PDF] Les suites et la récurrence

[PDF] Les suites et les fonctions

[PDF] Les suites et raisonnement par récurrence

[PDF] Les suites et récurrences

[PDF] Les suites excercice

[PDF] les suites exercice

[PDF] les suites exercices corrigés

[PDF] les suites exercices corrigés 1ere s

[PDF] Les suites géo/arithm