[PDF] LES SUITES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.



LES SUITES

- Si une suite décroissante est non minorée alors elle tend vers ?? . Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



SUITES NUMERIQUES I) Définition dune suite II) Sens de variation

Définition : Lorsqu'une suite est définie par son premier terme et par une relation qui permet de calculer tous les termes successifs de proche en proche on 



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



LES SUITES (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 1). I. Raisonnement par récurrence. 1) Le principe.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTIQUES. ET SUITES GÉOMÉTRIQUES. Tout le cours en vidéo : https://youtu.be/ 



LES SUITES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 :.



GÉNÉRALITÉS SUR LES SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :.



LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DE SUITES. I. Limite d'une suite géométrique. 1) Suite (qn).



Maths vocab in English

maths : les deux sont corrects toutefois math relève de l'anglais américain et maths de l'anglais britannique. Qu'il y ait un s ou non

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLES SUITES Le raisonnement par récurrence Principe : Si la propriété P est : - vraie au rang n0 (Initialisation), - héréditaire à partir du rang n0 (Hérédité), alors la propriété P est vraie pour tout entier n ≥

n0. Limites Propriétés : - lim n→+∞ n=+∞ lim n→+∞ n 2 lim n→+∞ n=+∞ lim n→+∞ 1 n =0 lim n→+∞ 1 n 2 =0 lim n→+∞ 1 n =0 . Limite d'une somme : lim n→+∞ u n

L L L +∞

lim n→+∞ v n

L' +∞

()lim nn n uv

L + L' +∞

F.I.* Limite d'un produit :

lim n→+∞ u n

L L > 0 L < 0 L > 0 L < 0 +∞

0 lim n→+∞ v n

L' +∞

ou -∞ ()lim nn n uv

L L' +∞

F.I. Limite d'un quotient :

lim n→+∞ u n

L L L > 0 ou +∞

L < 0 ou -∞

L > 0 ou +∞

L < 0 ou -∞

0 +∞

ou -∞ lim n→+∞ v n

L'≠

0 +∞

ou -∞

0 avec

v n >0

0 avec

v n >0

0 avec

v n <0

0 avec

v n <0

0 L' > 0 L' < 0 L' > 0 L' < 0 +∞

ou -∞ lim n→+∞ u n v n L L'

0 +∞

F.I. +∞

F.I. Les quatre formes indéterminées sont, par abus d'écriture : "∞-∞

0×∞

" et " 0 0

". YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSuite géométrique Formule de récurrence :

u n+1 =q×u n

Formule explicite :

u n =u 0 ×q n

Limite d'une suite géométrique : q

-11 lim n→+∞ q n pas de limite 0 1 +∞

Somme des termes d'une suite géométrique :

1+q+q 2 +...+q n 1-q n+1 1-q Limites et comparaison Théorèmes de comparaison : 1) Si, à partir d'un certain rang, u n n et lim n→+∞ u n alors lim n→+∞ v n . 2) Si, à partir d'un certain rang, u n ≥v n et lim n→+∞ u n alors lim n→+∞ v n . Théorème d'encadrement (théorème des gendarmes) : Si, à partir d'un certain rang, u n n n et lim n→+∞ u n =lim n→+∞ w n =L alors lim n→+∞ v n =L

. Suites majorées, minorées, bornées - (un) est majorée s'il existe un réel M tel que pour tout n,

u n . - (un) est minorée s'il existe un réel m tel que pour tout n, u n ≥m

. - (un) est bornée si elle est à la fois majorée et minorée. Théorème de convergence monotone : - Si une suite croissante est majorée alors elle est convergente. - Si une suite décroissante est minorée alors elle est convergente. Corollaire : - Si une suite croissante est non majorée alors elle tend vers +∞

. - Si une suite décroissante est non minorée alors elle tend vers -∞

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frCONTINUITÉ ET DERIVATION Limites Propriétés : -

lim x→+∞ x 2 lim x→-∞ x 2 lim x→+∞ x 3 lim x→-∞ x 3 lim x→+∞ x=+∞ lim x→+∞ 1 x =0 lim x→-∞ 1 x =0

Définitions : - La droite d'équation

x=A est asymptote verticale à la courbe représentative de la fonction f si lim x→A f(x)=+∞ ou lim x→A f(x)=-∞ . - La droite d'équation y=B est asymptote horizontale à la courbe représentative de la fonction f si lim x→+∞ f(x)=B ou lim x→-∞ f(x)=B peut désigner +∞ ou un nombre réel : Limite d'une somme lim x→α f(x)=

L L L +∞

lim x→α g(x)=

L' +∞

lim x→α f(x)+g(x)

L + L' +∞

F.I. Limite d'un produit

lim x→α f(x)=

L L > 0 L < 0 L > 0 L < 0 +∞

0 lim x→α g(x)=

L' +∞

ou -∞ lim x→α f(x)g(x)

L L' +∞

F.I. Limite d'un quotient

lim x→α f(x)=

L L L > 0 ou +∞

L < 0 ou -∞

L > 0 ou +∞

L < 0 ou -∞

0 +∞

ou -∞ lim x→α g(x)=

L'≠

0 +∞

ou -∞

0 avec

g(x)>0

0 avec

g(x)>0

0 avec

g(x)<0

0 avec

g(x)<0

0 L' > 0 L' < 0 L' > 0 L' < 0 +∞

ou -∞ lim x→α f(x) g(x) L L'

0 +∞

F.I. +∞

F.I. Limites et comparaisons Théorèmes de comparaison : Si et : - Si lim x→+∞ f(x)=+∞quotesdbs_dbs46.pdfusesText_46
[PDF] les suites en terminal S

[PDF] Les suites en terminale

[PDF] les suites en ts

[PDF] Les suites et e

[PDF] Les suites et encadrement

[PDF] Les suites et la convergence

[PDF] Les suites et la récurrence

[PDF] Les suites et les fonctions

[PDF] Les suites et raisonnement par récurrence

[PDF] Les suites et récurrences

[PDF] Les suites excercice

[PDF] les suites exercice

[PDF] les suites exercices corrigés

[PDF] les suites exercices corrigés 1ere s

[PDF] Les suites géo/arithm