[PDF] SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES





Previous PDF Next PDF



Cours I : SUITES NUMERIQUES I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels. 1/ Définition. Définition : Une suite un est une application de l'ensemble ? ou une partie de ? dans ? 



Fiche de révision2 : Les suites numériques

La suite numérique définie pour tout n ? N par un = 0 est appelée la suite nulle. 1.2 Opérations sur les suites. Définition 1.15. ( Suite somme). Soient (un)n 



COURS TERMINALE S LES SUITES NUMERIQUES

LES SUITES NUMERIQUES. A. Notation - Définition. Définition : une suite numérique (un) est une application de dans . On note (un) la suite de nombres u0 



Suites numériques

8 nov. 2011 Suites numériques. Bernard Ycart. Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur.



Suites numériques

Suites numériques. Aimé Lachal. Cours de mathématiques. 1er cycle 1re année. Sommaire. 1 Rappels sur les suites. Monotonie d'une suite réelle.



GÉNÉRALITÉS SUR LES SUITES

1) Définition d'une suite numérique. Exemple d'introduction : On considère une liste de nombres formée par tous les nombres impairs rangés.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

I. Suites arithmétiques. 1) Définition. Exemple : Considérons une suite numérique (un) où la différence entre un terme et son.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

I. Suites arithmétiques. 1) Définition. Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et 



Chapitre 2 : Les suites numériques

Chapitre 2 : Les suites numériques formaliser cette notion de suite de savoir obtenir les limites de suites dans les cas les.



SUITES NUMERIQUES

Suites numériques. - 2 -. ECS 1. Les réels a et b sont constants (indépendants de n). Si. 1. = a. la suite est arithmétique de raison b.

1

SUITES ARITHMÉTIQUES

ET SUITES GÉOMÉTRIQUES

Tout le cours en vidéo : https://youtu.be/05UHsy9G4M4

Partie 1 : Suites arithmétiques

1) Définition

Exemple :

Considérons la suite (

) où l'on passe d'un terme au suivant en ajoutant 5. Si le premier terme est égal à 3, les termes suivants sont : =3, =8, =13, =18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : (

=3 +5

Définition : Une suite (

) est une suite arithmétique s'il existe un nombre tel que pour tout entier , on a :

Le nombre est appelé raison de la suite.

Remarque :

La raison peut être un nombre négatif. On peut par exemple ajouter -2. Méthode : Démontrer qu'une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

a) La suite ( ) définie par : =7-9 est-elle arithmétique ? b) La suite ( ) définie par : +3 est-elle arithmétique ?

Correction

a) =7-9 +1 -(7-9) =7-9-9-7+9 =-9.

La différence entre deux termes successifs reste constante et égale à -9, donc on passe d'un

terme au suivant en ajoutant -9. ) est une suite arithmétique de raison -9. b) +1 +3-( +3) +2+1+3- -3 =2+1. 2

La différence entre un terme et son précédent n'est pas constante car elle dépend de .

) n'est pas une suite arithmétique.

Propriété : (

) est une suite arithmétique de raison et de premier terme

Pour tout entier naturel , on a :

Démonstration au programme :

Vidéo https://youtu.be/Jn4_xM_ZJD0

La suite arithmétique (

) de raison et de premier terme vérifie la relation

En calculant les premiers termes :

En additionnant membre à membre ces égalités, on obtient : Soit, en retranchant aux deux membres les termes identiques : Méthode : Déterminer une expression en fonction de d'une suite arithmétique

Vidéo https://youtu.be/6O0KhPMHvBA

a) Déterminer l'expression, en fonction de , de la suite arithmétique définie par : =7 -4 b) Déterminer l'expression, en fonction de , de la suite arithmétique définie par : =5 +3

Correction

a) On a : =7 et -4 On passe d'un terme au suivant en ajoutant -4, et donc la raison est égal à -4et le premier terme est égal à 7.

Ainsi :

=7+× -4 =7-4 b) On a : =5 et +3 On passe d'un terme au suivant en ajoutant 3, donc la raison est égale à 3.

Ici, le terme

n'est pas donné mais on peut le calculer. 3

Pour passer de

, on retire 3 (" marche arrière ») donc -3=2.

Ainsi :

=2+3 -1 Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (

) tel que =7 et =19. a) Déterminer la raison et le premier terme de la suite ( b) Exprimer en fonction de .

Correction

a) Les termes de la suite sont de la forme

Ainsi :

+5 +9

7=

+5

19=

+9

7-19=

+5- -9← On soustrait membre à membre -12=-4 -12 -4 =3

Comme

+5=7, on a : +5×3=7 =7-15 =-8. b) =-8+×3 =3-8

2) Sens de variation

Propriété : (

) est une suite arithmétique de raison r. - Si > 0 alors la suite ( ) est croissante. - Si < 0 alors la suite ( ) est décroissante.

Démonstration :

- Si > 0 alors >0 et la suite ( ) est croissante. - Si < 0 alors <0 et la suite ( ) est décroissante. 4 Méthode : Déterminer le sens de variation d'une suite arithmétique

Vidéo https://youtu.be/R3sHNwOb02M

Étudier les variations des suites arithmétiques ( ) et ( ) définies par : =3+5 b) ( =-3 -4

Correction

a) ( ) est croissante car de raison positive et égale à 5. b) On passe d'un terme au suivant en ajoutant -4. ( ) est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. 5

RÉSUMÉ

) une suite arithmétique - de raison - de premier terme

Exemple :

=-0,5 et =4

Définition

-0,5

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

=4-0,5 Sens

De variation

Si > 0 : (

) est croissante.

Si < 0 : (

) est décroissante. =-0,5<0

La suite (

) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés.

La croissance est linéaire.

Partie 2 : Suites géométriques

1) Définition

Exemple :

Considérons la suite (

) où l'on passe d'un terme au suivant en multipliant par 2. Si le premier terme est égal à 5, les termes suivants sont : =5, =10, =20, =40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La suite est donc définie par : (

=5 =2

Définition : Une suite (

) est une suite géométrique s'il existe un nombre réel tel que pour tout entier , on a : Le nombre est appelé raison de la suite. Méthode : Démontrer qu'une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (

)définie par : =3×5 est-elle géométrique ? 6

Correction

3×5

3×5

5 5 =5 =5

Le rapport entre un terme et son précédent reste constant et égale à 5, donc on passe d'un

terme au suivant en multipliant par 5.quotesdbs_dbs46.pdfusesText_46
[PDF] Les suites numériques DM

[PDF] les suites numériques exercices corrigés pdf mpsi

[PDF] les suites numériques pdf

[PDF] Les suites numériques, bloquage

[PDF] les suites par récurrence

[PDF] Les suites partie Géométrique

[PDF] les suites pdf

[PDF] les suites première sti2d

[PDF] les suites récurrentes

[PDF] les suites récurrentes Ts

[PDF] les suites sont elles géométriques

[PDF] Les suites terminales

[PDF] Les suites, besoin d'aide!

[PDF] Les suites, démonstration par récurrence

[PDF] Les suites: arithmétiques, géométrique