[PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice





Previous PDF Next PDF



Fonctions de plusieurs variables

Exercice 1 **T. Etudier l'existence et la valeur éventuelle d'une limite en (00) des fonctions suivantes : 1. xy x+y. 2. xy x2+y2.



TD1 – Continuité des fonctions de plusieurs variables réelles

Agral 3 2016 - 2017. TD1 – Continuité des fonctions de plusieurs variables réelles. Exercice 1. Étudier la continuité des fonctions suivantes : f(x



´Eléments de calculs pour létude des fonctions de plusieurs

(C'est `a dire calculer la différentielle de u v. (les variables sont u et v) et appliquer votre résultat `a la fonction f.) Exercice 4. Soit f(x y) = 16?x2? 



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables. Exercice 1. Montrer d'après la definition que la fonction : f(x y) = x2 + y2.



Fonctions de plusieurs variables

Une fonction de laplacien nul est dite harmonique.) Correction ?. [005904]. Exercice 19 *** I. Soit f : R2 ? R2 de 



MT22-Fonctions de plusieurs variables et applications

Toutes les fonctions citées ci-dessus sont des fonctions reliant une variable à deux ou trois autres variables. Page 6. Sommaire. Concepts. Exemples. Exercices.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Exercice 6. Déterminer et représenter le domaine de définition maximal des fonctions de deux variables suivantes : f1 : (x y) ??.



Fonctions de plusieurs variables limites et continuité Correction de

Feuille d'exercices numéro 2 : Fonctions de plusieurs variables limites et continuité. Correction de quelques exercices non traités en TD. Exercice 1.



Fonctions de plusieurs variables & géométrie analytique

Du même auteur chez le même éditeur. Introduction à l'analyse. Cours et exercices corrigés. Licence 1 288 pages. Géométrie. Géométrie affine



Exercices corrigés Fonctions de deux variables Fonctions convexes

Exercices corrigés. Fonctions de deux variables. Fonctions convexes et extrema libres. Exercice 1.62. Soit la fonction f définie par f(x y) = x?y?.



[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs

Module de Mathématiques MATH´EMATIQUES ´Eléments de calculs pour l'étude des fonctions de plusieurs variables et des équations différentielles G Ch`eze



[PDF] Fonctions de plusieurs variables - Exo7 - Exercices de mathématiques

Exercice 1 **T Etudier l'existence et la valeur éventuelle d'une limite en (00) des fonctions suivantes : 1 xy x+y 2 xy x2+y2



[PDF] Fonctions de plusieurs variables limites et - Université de Rennes

Feuille d'exercices numéro 2 : Fonctions de plusieurs variables limites et continuité Correction de quelques exercices non traités en TD Exercice 1



[PDF] Fonctions de plusieurs variables et applications pour lingénieur

Ce cours présente les concepts fondamentaux de l'Analyse des fonctions de plusieurs variables Les premiers chapitres généralisent les notions de limite 



Exercices corrigés -Continuité des fonctions de plusieurs variables

Exercices corrigés - Continuité des fonctions de plusieurs variables Pour commencer Exercice 1 - Ensembles de définition [Signaler une erreur] [Ajouter à 



Exercices corrigés -Extrema des fonctions de plusieurs variables

Exercices corrigés - Extrema des fonctions de plusieurs variables Extrema libres - points critiques Exercice 1 - Extrema [Signaler une erreur] [Ajouter à 



[PDF] Continuité des fonctions de plusieurs variables réelles Exercice 1

Agral 3 2016 - 2017 TD1 – Continuité des fonctions de plusieurs variables réelles Exercice 1 Étudier la continuité des fonctions suivantes : f(x y) =



[PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables Exercice 1 Montrer d'après la definition que la fonction : f(x y) = x2 + y2



[PDF] Exercices corrigés Fonctions de deux variables Fonctions convexes

Exercices corrigés Fonctions de deux variables Fonctions convexes et extrema libres Exercice 1 62 Soit la fonction f définie par f(x y) = x?y?



[PDF] MT22-Fonctions de plusieurs variables et applications - UTC - Moodle

Sommaire Concepts Exemples Exercices Documents 2 Sommaire I Fonctions de plusieurs variables 3 I 1 Fonctions de deux variables

  • Comment Etudier une fonction à plusieurs variables ?

    Ainsi, pour une fonction de deux variables (x, y) ?? f(x, y) : — le graphe de f est un sous-ensemble de l'espace R3 muni des coordonnées (x, y, z); — l'ensemble de définition de f est un sous-ensemble du plan horizontal muni des coor- données (x, y); — le dessin des lignes de niveau de f se situe lui-aussi dans le plan
  • Comment calculer la limite d'une fonction à deux variables ?

    Exemple (ultra connu): f(x,y) = xy / (x2 + y2), f(0,0) = 0; montrer que f n'est pas continue en (0,0). L'astuce consiste souvent à trouver deux ensembles A = {(x,h(x))} et B = {(x,k(x))} (h et k fonctions à trouver) tels que lim(x,y)A-->(0,0) f(x,y) est différent de lim(x,y)B-->(0,0) f(x,y).
  • Comment Etudier l'existence d'une limite en 0 0 ?

    La limite de f f en (0,0,0) ( 0 , 0 , 0 ) ne peut pas exister. Il suffit d'étudier la limite des deux fonctions coordonnées (f1,f2) ( f 1 , f 2 ) . Or, x2+y2?1 x 2 + y 2 ? 1 tend vers -1, et sinxx sin ? x x vers 1 si (x,y) ( x , y ) tend vers (0,0) ( 0 , 0 ) .
  • On rappelle que pour étudier la continuité d'une fonction f sur un point il faut : — vérifier si la limite de f au point x0 existe et, si elle existe, la calculer ; — vérifier si la valeur de la limite est égal à f(x0).
TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD3 - Différentiabilité des fonctions de plusieurs variables Exercice 1.Montrer d"après la definition que la fonction : f(x,y) =x2+y2 est différentiable dansR2. Calculer la différentielle. Solution. La fonctionfest différentiable au point(x0,y0)?R2ssi : lim

21+h22= 0.

Dès que :

f(x0+h1,y0+h2) =x20+h21+ 2x0h1+y20+h22+ 2y0h2, ?f(x0,y0) = (2x0,2y0), la limite se réduit à : lim (h1,h2)→(0,0)h

21+h22Èh

21+h22= lim(h1,h2)→(0,0)Èh

21+h22= 0.

Cela suffit pour prouver quefest différentiable dansR2.

Exercice 2.Soitf:R2?→Rdéfinie par :

f(x,y) =xexy. Est-elle différentiable au point(1,0)? Si oui, linéariserfau voisinage de(1,0)et approcher la valeurf(1.1,-0.1). Solution. La fonctionfest dérivable dansR2car composition de fonctions dérivables. Les dérivées partielles : ?f(x,y) = (∂xf(x,y),∂yf(x,y)) = (exy+xyexy,x2exy) sont elles-mêmes dérivables dansR2car composition de fonctions dérivables. La fonctionfest de classeC1surR2et donc elle est différentiable dansR2. En particulier elle est différentiable

au point(1,0). Dès que la fonction est différentiable, elle admet une linéarisation au voisinage

de(1,0): f(x,y) =f(1,0) + (x-1)∂xf(1,0) +y∂yf(1,0) +o(È(x-1)2+y2), f(x,y) = 1 + (x-1) +y+o(È(x-1)2+y2) =x+y+o(È(x-1)2+y2). Cette linéarisation est valide localement, au voisinage du point(1,0), et pas dans toutR2! Pour approcher la valuerf(1.1,-0.1)on calcule : f(1.1,-0.1)≈1.1-0.1≈1 e on sait que l"erreur d"approximation est un petit o de

È(x-1)2+y2. Plusx,ysont proches

(en terms de distance! ) du point(1,0)plus l"approximation est précise. Calculer avec une calculatrice la valeur exacte def(1.1,-0.1). 1

Exercice 3.Soitf:R2?→Rdéfinie par :

f(x,y) =x3-y3.

Dire si le graphe def:

G f={(x,y,z)?R3t.q.z=f(x,y)} admet un plan tangent au point(0,1,-1)et, le cas échant, donner l"équation du plan. Solution. Dire que le grapheGfadmet un plan tangent au point(0,1,-1)est équivalent à dire quefest différentiable au point(0,1). Clairement la fonctionfest de classeC1dansR2et donc différentiable dansR2. L"èquation du plan tangent est : t(x,y) =f(0,1) +∂xf(0,1)x+∂yf(0,1)(y-1) =-1-3(y-1) = 2-3y

Exercice 4.Soitf:R2?→Rdéfinie par :

f(x,y) =( x2y3x

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle de classeC1dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on utilise les cordonnées polaires de centre(0,0): x=rcosθ y=rsinθ avecr >0etθ?[0,2π[. On veut montrer que : lim r→0f(rcosθ,rsinθ) = 0 et que cette limite ne dépend pas de l"angleθ. En pratique il faut trouver une fonction g(r)de la seule variablertelle que

0≤ |f(rcosθ,rsinθ)| ≤ |g(r)|

etg(r)→0sir→0. Rappel : ne pas mettre la valuer absolue dans la majoration conduit

à des résultats faux.

f(rcosθ,rsinθ) =r2cos2θr3sin3θr

2(cos2θ+ sin2θ)=r3cos2θsin3θ

Dès que|cos2θsin3θ| ≤1on a :

0≤ |f(rcosθ,rsinθ)| ≤ |r3|

etr3→0sir→0. Donc lim (x,y)→(0,0)f(x,y) = 0 =f(0,0).

Cela prouve que la fonction est continue dansR2.

2 •Dérivabilité. On se demande si la fonctionfest dérivable. Si(x,y)?= (0,0): ∂f∂x (x,y) =2xy5(x2+y2)2 ∂f∂y (x,y) =x2y2(3x2+y2)(x2+y2)2 Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 ∂f∂y (0,0) = limh→0f(0,h)-f(0,0)h = limh→00-0h = 0 Cela prouve quefest dérivable au point(0,0)et∂xf(0,0) =∂yf(0,0) = 0. •ClasseC1. On se demande si les dérivées partielles def: xf(x,y) =(

2xy5(x2+y2)2si(x,y)?= (0,0)

0sinon

yf(x,y) =( x2y2(3x2+y2)(x2+y2)2si(x,y)?= (0,0)

0sinon

sont fonctions continues dansR2. Elles sont continues dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on calcule les limites : lim (x,y)→(0,0)∂xf(x,y) lim(x,y)→(0,0)∂yf(x,y) à l"aide des cordonnées polaires de centre(0,0). xf(rcosθ,rsinθ) =2rcosθr5sin5θr

4(cos2θ+ sin2θ)2= 2r2cosθsin5θ.

Dès que|cosθsin5θ| ≤1on a :

0≤ |∂xf(rcosθ,rsinθ)| ≤2|r2|

et2r2→0sir→0. Donc lim (x,y)→(0,0)∂xf(x,y) = 0 =∂xf(0,0).

Même chose pour∂yf:

yf(rcosθ,rsinθ) =r2cos2θr2sin2θ(3r2cos2θ+r2sin2θ)r

4(cos2θ+ sin2θ)2= cos2θsin2θ(3r2cos2θ+r2sinθ)

Dès que|cos2θsin2θ| ≤1et que|a+b| ≤ |a|+|b|pour touta,b?Ron a :

0≤ |∂yf(rcosθ,rsinθ)| ≤3|r2cos2θ|+|r2sin2θ| ≤4|r2|

et4r2→0sir→0. Donc lim (x,y)→(0,0)∂yf(x,y) = 0 =∂yf(0,0).

Cela prouve quef?C1(R2).

3 •Différentiabilité. La fonction est de classeC1donc elle est différentiable dansR2.

Exercice 5.Soitf:R2?→Rdéfinie par :

f(x,y) =¨ yx

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on considère la restriction defà la droitey=x: f(x,x) =12x qui ne tend pas vers0 =f(0,0)lorsquex→0. Donc la fonction n"est pas continue au point(0,0).

•Dérivabilité. On se demande si la fonction admet toutes les dérivées partielles. Si(x,y)?=

(0,0): ∂f∂x (x,y) =-2xy(x2+y2)2 ∂f∂y (x,y) =x2-y2(x2+y2)2

Doncfest dérivable dansR2\ {(0,0)}.

Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 lim h→0f(0,h)-f(0,0)h

La dérivée partielle par rapport àxexiste dansR2et la dérivée partielle par rapport ày

quotesdbs_dbs2.pdfusesText_2
[PDF] exo7 fonction a plusieurs variables cours

[PDF] continuité d'une fonction ? deux variables exercices corrigés

[PDF] exercice dérivée partielle corrigé

[PDF] multiple et diviseur 4eme controle

[PDF] detection de contours traitement d'image

[PDF] filtre moyenneur traitement dimage

[PDF] filtre gaussien matlab traitement d'image

[PDF] moteur de recherche internet

[PDF] moteur de recherche francais

[PDF] francis ponge le parti pris des choses pdf

[PDF] les moteurs de recherche les plus utilisés

[PDF] francis ponge mouvement

[PDF] moteur de recherche définition

[PDF] francis ponge biographie

[PDF] moteurs de recherche gratuits