[PDF] [PDF] Fonctions de plusieurs variables - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



TD1 – Continuité des fonctions de plusieurs variables réelles

TD1 – Continuité des fonctions de plusieurs variables réelles. Exercice 1. Étudier la continuité qui conduisent à deux valeurs différentes de la limite.



Fonctions de plusieurs variables limites et continuité Correction de

Feuille d'exercices numéro 2 : Fonctions de plusieurs variables limites et continuité. Correction de quelques exercices non traités en TD. Exercice 1.



Fonctions de plusieurs variables

Exercice 2 ***. On pose fxy : [?1



Chapitre 2 - Continuité dune fonction de plusieurs variables

Exercice 1. 1. Montrer qu'une fonction constante est continue. 2. Montrer que l'application (x1x2) ?? x1 est continue 



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

y3. (x ? 1)2 + y2 ? Exercice 9. Donner le domaine de définition des fonctions suivantes puis déterminer si elles sont prolongeables par continuité sur R2 : f1 



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

Calculer avec une calculatrice la valeur exacte de f(1.1?0.1). 1. Page 2. Exercice 3. Soit f : R2 ?? R définie par :.



Fonctions de plusieurs variables

xy2 dy sur (]0+?[)2 (trouver un facteur intégrant non nul ne dépendant que de x2 +y2). Correction ?. [005897]. Exercice 12 *** I. Résoudre les équations aux 



Exercices corrigés Fonctions de deux variables Fonctions convexes

Exercices corrigés. Fonctions de deux variables. Fonctions convexes et extrema libres. Exercice 1.62. Soit la fonction f définie par f(x y) = x?y?.



MT22-Fonctions de plusieurs variables et applications

Continuité-propriétés. Exercices : Exercice A.1.7. Exercice A.1.8. Proposition I.1.3 (x0y0) étant donnés





[PDF] Continuité des fonctions de plusieurs variables réelles Exercice 1

Agral 3 2016 - 2017 TD1 – Continuité des fonctions de plusieurs variables réelles Exercice 1 Étudier la continuité des fonctions suivantes : f(x y) =



[PDF] Fonctions de plusieurs variables limites et - Université de Rennes

Feuille d'exercices numéro 2 : Fonctions de plusieurs variables limites et continuité Correction de quelques exercices non traités en TD Exercice 1



Exercices corrigés -Continuité des fonctions de plusieurs variables

Exercices corrigés - Continuité des fonctions de plusieurs variables Pour commencer Exercice 1 - Ensembles de définition [Signaler une erreur] [Ajouter à 



[PDF] Fonctions de plusieurs variables - Exo7 - Exercices de mathématiques

Exercice 2 *** On pose fxy : [?11] ? R t ?? xt2 +yt puis F(xy) = sup t?[?11] fxy(t) Etudier la continuité de F sur R2 Correction ?



[PDF] Feuille 2 – Fonctions de deux variables : limites continuité dérivées

Feuille 2 – Fonctions de deux variables : limites continuité dérivées partielles et extrema locaux Exercice 1 Déterminer si les fonctions suivantes ont 



[PDF] ( ) ( ) Exercices avec solutions : LIMITE ET CONTINUITE - AlloSchool

est continue sur : ] ? ??3[ et sur ] ? 31[ et sur ]1 +?[ 3) La fonction t est continue sur tous le intervalles de la forme : ]? /2+ ; /2+ 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

y3 (x ? 1)2 + y2 ? Exercice 9 Donner le domaine de définition des fonctions suivantes puis déterminer si elles sont prolongeables par continuité sur R2 : f1 



[PDF] Exercices corrigés Fonctions de deux variables Fonctions convexes

Exercices corrigés Fonctions de deux variables Fonctions convexes et extrema libres Exercice 1 62 Soit la fonction f définie par f(x y) = x?y?



[PDF] MT22-Fonctions de plusieurs variables et applications - UTC - Moodle

Continuité-propriétés Exercices : Exercice A 1 7 Exercice A 1 8 Proposition I 1 3 (x0y0) étant donnés à partir de la fonction f de 2 variables



[PDF] Limite continuité théorème des valeurs intermédiaires dérivabilité

Limites continuité dérivabilité Pascal Lainé 6 ??( ) = ?( ) ?1 + 2 Allez à : Correction exercice 24 : Exercice 25 : Les fonctions :? ? ? 

  • Comment montrer la continuité d'une fonction à 2 variables ?

    Soit f une fonction de deux variables réelles à valeurs réelles et soit D un sous ensemble de R2. On dit que f est continue sur (l'ensemble) D si et seulement si elle est continue en chacun des points de D. f + g est continue en (x0, y0). fg est continue en (x0, y0).
  • Comment calculer la continuité ?

    Définition : Continuité d'une fonction en un point
    Soit �� ? ? . On dit qu'une fonction à valeur réelle �� ( �� ) est continue en �� = �� si l i m ? ? ? �� ( �� ) = �� ( �� ) .
  • Comment Etudier l'existence d'une limite en 0 0 ?

    La limite de f f en (0,0,0) ( 0 , 0 , 0 ) ne peut pas exister. Il suffit d'étudier la limite des deux fonctions coordonnées (f1,f2) ( f 1 , f 2 ) . Or, x2+y2?1 x 2 + y 2 ? 1 tend vers -1, et sinxx sin ? x x vers 1 si (x,y) ( x , y ) tend vers (0,0) ( 0 , 0 ) .
  • Exemple (ultra connu): f(x,y) = xy / (x2 + y2), f(0,0) = 0; montrer que f n'est pas continue en (0,0). L'astuce consiste souvent à trouver deux ensembles A = {(x,h(x))} et B = {(x,k(x))} (h et k fonctions à trouver) tels que lim(x,y)A-->(0,0) f(x,y) est différent de lim(x,y)B-->(0,0) f(x,y).
Exo7

Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1**TEtudier l"existence et la valeur éventuelle d"une limite en(0;0)des fonctions suivantes :

1. xyx+y 2. xyx 2+y2 3. x2y2x 2+y2 4.

1+x2+y2y

siny 5. x3+y3x 2+y2 6. x4+y4x 2+y2. t7!xt2+ytpuisF(x;y) =sup t2[1;1]f x;y(t). Etudier la continuité deFsurR2. xy(x2y2)x

2+y2si(x;y)6= (0;0).

(x;y)7!(0 siy=0 y

2sinxy

siy6=0. 1.

Etudier la continuité de f.

2.

Etudier l"e xistenceet la v aleurév entuellede déri véespartielles d"ordre 1 et 2. On montrera en particulier

que

Déterminer une fontion de classeC2sur un intervalleIdeRà préciser à valeurs dansRtelle que la fonction

1 g(x;y) =fcos2xch2y

soit non constante et ait un laplacien nul sur un sous-ensemble deR2le plus grand possible (une fonction de

Laplacien nul est dite harmonique).

1.f:R2!R

(x;y)7!x2+xy+y2+2x+3y

2.f:R2!R

(x;y)7!x4+y44xy admettra que ce maximum existe).

2+(ya)2+py

2+(xa)2.

dansRqui à(x;y)associejyx vérifie : 3. 1. 2

2+y2surD=f(x;y)2R2=x>0g(en passant en polaires).

Correction del"exer cice1 NOn notefla fonction considérée. 1.

Pour x6=0,f(x;x+x3)=x(x+x3)xx+x3x!0+1x

. Quandxtendvers0,x+x3tendvers0puis lim(x;y)!(0;0) x>0;y=x+x3f(x;y)=

¥.fn"a de limite réelle en(0;0).

2.

Pour x6=0,f(x;0) =x0x

2+02=0 puis lim(x;y)!(0;0)

y=0f(x;y) =0. Mais aussi, pourx6=0,f(x;x) =xxx

2+x2=12

puis lim (x;y)!(0;0)x=yf(x;y) =12 . Donc sifa une limite réelle, cette limite doit être égale à 0 et à12 ce qui est impossible.fn"a pas de limite réelle en(0;0). 3. Pour tout (x;y)2R2,x22jxyj+y2= (jxjjyj)2>0 et doncjxyj612 (x2+y2). Par suite, pour(x;y)6= (0;0), jf(x;y)j=x2y2x

2+y26(x2+y2)24(x2+y2)=14

(x2+y2).

Comme lim

(x;y)!(0;0)14 (x2+y2) =0, on a aussi lim(x;y)!(0;0)f(x;y) =0. 4. lim (x;y)!(0;0)sinyy =1 et lim(x;y)!(0;0)(1+x2+y2) =1. Donc lim(x;y)!(0;0)f(x;y) =1. 5.

Pour (x;y)2R2,jx3+y3j=jx+yj(x2+xy+y2)632

jx+yj(x2+y2)et donc pour(x;y)6= (0;0), jf(x;y)j=jx3+y3jx

2+y2632

jx+yj.

Comme lim

(x;y)!(0;0)32 jx+yj=0, on a aussi lim(x;y)!(0;0)f(x;y) =0. 6.

Pour (x;y)2R2,jx4+y4j= (x2+y2)22x2y26(x2+y2)2+212

(x2+y2)2=32 (x2+y2)2et donc pour(x;y)6= (0;0), jf(x;y)j=jx4+y4jx

2+y2632

(x2+y2).

Comme lim

(x;y)!(0;0)32

(x2+y2) =0, on a aussi lim(x;y)!(0;0)f(x;y) =0.Correction del"exer cice2 NDéterminonstoutd"abordF(x;y)pour(x;y)2R2. •Poury2R,F(x;y)=Maxff0;y(1);f0;y(1)g=Maxfy;yg=

jyj. • Six6=0,F(x;y) =Maxfx;y(1);fx;yy2x;fx;y(1)=Maxn x+y;xy;y24xo =Maxn x+jyj;y24xo Plus précisément, six>0, on ax+jyj>0 ety24x60. DoncF(x;y) =x+jyjce qui reste vrai quandx=0. Si x<0,x+jyj y24x =4x2+4xjyj+y24x=(2x+jyj)24x<0 et doncF(x;y) =y24x.

8(x;y)2R2;F(x;y) =(x+jyjsix>0

y24xsix<0.En vertu de théorèmes généraux,Fest continue surf(x;y)2R2;x>0getf(x;y)2R2;x<0g. Soity06=0.

lim(x;y)!(0;y0) x<0;y=y0F(x;y) = +¥6=jy0j=F(0;y0)et doncFn"est pas continue en(0;y0). Enfin, lim(x;y)!(0;0) x<0;y=pxF(x;y) = 14

6=0=F(0;0)et doncFn"est pas continue en(0;0).

3

Fest continue surR2nf(0;y);y2Rget est discontinue en tout(0;y),y2R.Correction del"exer cice3 N• Pour(x;y)2R2,x2+y2=0,x=y=0 et doncfest définie surR2. •fest de classeC¥surR2nf(0;0)g

en tant que quotient de fonctions de classeC¥surR2nf(0;0)gdont le dénominateur ne s"annule pas sur

R

2nf(0;0)g.

2+y2=jxyj. Commelim(x;y)!(0;0)jxyj=0, onendéduitque lim(x;y)!(0;0)

(x;y)6=(0;0)f(x;y)= f(x;0)f(0;0)x0=x0(x202)x(x2+02)=0, et donc lim

x!0f(x;0)f(0;0)x0=0. Ainsi,fadmet une dérivée partielle par rapport à sa première variable en(0;0)

et

Finalement,fadmet surR2une dérivée partielle par rapport à sa première variable définie par

:0 si(x;y) = (0;0) y(x4+4x2y2y4)(x2+y2)2si(x;y)6= (0;0). dansR2 Donc,fadmet surR2une dérivée partielle par rapport à sa deuxième variable définie par :0 si(x;y) = (0;0) x(x44x2y2y4)(x2+y2)2si(x;y)6= (0;0). R fest de classeC1exactement surR2.Correction del"exer cice4 N4

1.Posons D=f(x;y)=y6=0g.fest continue surR2nDen vertu de théorèmes généraux. Soitx02R.

jf(x;y)f(x0;0)j=(0 siy=0 y

2sinxy

siy6=06y2.

Comme lim

(x;y)!(x0;0)y2=0, lim(x;y)!(x0;0)jf(x;y)f(x0;0)j=0 et doncfest continue en(x0;0). Finalement, (x;y)2R2nD, xcosxy puis xy sinxy et enfin 2xy cosxy x2y

2sinxy

variable surR2définie par ycosxy f(x0;y)f(x0;0)y0=(0 siy=0 ysinx 0y siy6=06jyj: et donc dérivée partielle par rapport à sa deuxième variable surR2définie par

2ysinxy

xcosxy 5 et donc )y =1 et donc

décritR2,cos(2x)ch(2y)décrit[1;1]. On suppose déjà quefest de classeC2sur[1;1]. L"applicationgest alors de

classeC2surR2et pour(x;y)2R2, +4sin2(2x)ch

2(2y)f00cos2xch2y

Ensuite,

2(2y)f0cos2xch2y

puis

2cos(2x)sh(2y)4sh(2y)ch

3(2y)f0cos2xch2y

+4cos2(2x)sh2(2y)ch

4(2y)f00cos2xch2y

Mais alors

Dg(x;y) =8cos(2x)ch2(2y)+8cos(2x)sh2(2y)ch

3(2y)f0cos2xch2y

+4sin2(2x)ch2(2y)+4cos2(2x)sh2(2y)ch

4(2y)f00cos2xch2y

8cos(2x)ch

3(2y)f0cos2xch2y

4(2y)f00cos2xch2y

8cos(2x)ch

3(2y)f0cos2xch2y

+4ch2(2y)4cos2(2x)ch

4(2y)f00cos2xch2y

4ch 2(2y)

2cos(2x)ch(2y)f0cos2xch2y

1cos2(2x)ch

2(2y) f

00cos2xch2y

Par suite,

Dg=0, 8(x;y)2R2;2cos(2x)ch(2y)f0cos2xch2y

1cos2(2x)ch

2(2y) f

00cos2xch2y

=0 , 8t2[1;1];2t f0(t)+(1t2)f00(t) =0, 8t2[1;1];((1t2)f0)0(t) =0 , 9l2R;8t2[1;1];(1t2)f0(t) =l: 6 Le choixl6=0 ne fournit pas de solution sur[1;1]. Doncl=0 puisf0=0 puisfconstante ce qui est exclu. Donc, on ne peut pas poursuivre sur[1;1]. On cherche dorénavantfde classeC2sur]1;1[de sorte queg est de classeC2surR2nkp2 ;0;k2Z. fsolution, 9l2R;8t2]1;1[;(1t2)f0(t) =l, 9l2R=8t2]1;1[;f0(t) =l1t2

, 9(l;m)2RR=8t2]1;1[;f(t) =largtht+m:Correction del"exer cice6 N1.fest de classeC1surR2qui est un ouvert deR2. Donc sifadmet un extremum local en un point(x0;y0)

deR2,(x0;y0)est un point critique def. Or, pour(x;y)2R2, 8< x+2y+3=0,8 :x=13 y=43 Donc sifadmet un extremum local, c"est nécessairement en13 ;43 avecf13 ;43 =73 . D"autre part, f(x;y) =x2+xy+y2+2x+3y= x+y2 +1 2y2 +1

2+y2+3y=

x+y2 +1

2+3y24

+2y1 x+y2 +1 2+34 y+43 2 73
>73 =f 13 ;43

Doncfadmet un minimum local en13

;43

égal à73

et ce minimum local est un minimum global.

D"autre part,fn"admet pas de maximum local.

2.fest de classeC1surR2qui est un ouvert deR2. Donc sifadmet un extremum local en un point(x0;y0)

deR2,(x0;y0)est un point critique def. Or, pour(x;y)2R2, 8<

4y34x=0,y=x3

x

9x=0,(x;y)2 f(0;0);(1;1);(1;1).

Lespointscritiquesdefsont(0;0),(1;1)et(1;1). Maintenant, pour(x;y)2R2,f(x;y)=f(x;y). Ceci permet de restreindre l"étude aux deux points(0;0)et(1;1). • Pourx2R,f(x;0) =x4>0 surR etf(x;x) =4x2+2x4=2x2(2+x2)<0 sur]p2;0[[]0;p2[. Doncfchange de signe dans tous voisinage de(0;0)et puisquef(0;0) =0,fn"admet pas d"extremum local en(0;0). • Pour(h;k)2R2, f(1+h;1+k)f(1;1) = (1+h)4+(1+k)44(1+h)(1+k)+2=6h2+6k24hk+4h3+4k3+h4+k4 =h2(2h2+1)2+k2(2k2+1)2>0:

fadmet donc un minimum global en(1;1)(et en(1;1)) égal à2.Correction del"exer cice7 NSoitMun point intérieur au triangleABC. On posea=BC,b=CAetc=AB. On notex,y,zetAles aires

respectives des trianglesMBC,MCA,MABetABC. On a 7 d(M;(BC))d(M;(CA))d(M(AB)) =2aire(MBC)a

2aire(MCA)b

2aire(MAB)c

=8xyzabc =8abc xy(Axy). T=f(x;y)2R2;x>0;y>0;x+y0=f(x;y)2R2;x>0;y>0;x+y6Ag(cela résulte d"un théorème de math Spé : une fonction numérique

continue sur un compact admet un minimum et un maximum ). Ce maximum est atteint dans l"intérieurTde

T

0carfest nulle au bord deT0et strictement positive à l"intérieur deT0.

Puisquefest de classeC1surTqui est un ouvert deR2,fatteint son maximum surTen un point critique de f. Or, pour(x;y)2T2, 8 y(Axy)xy=0,y(A2xy) =0 x(Ax2y) =0

2x+y=A

x+2y=A,x=y=A3

Le maximum cherché est donc égal à

8abc A3 A3 AA3 A3 =8A327abc. (On peut montrer que ce

maximum est obtenu quandMest le centre de gravité du triangleABC).Correction del"exer cice8 NSoientRun repère orthonormé deR2muni de sa structure euclidienne canonique puisM,AetBles points de

coordonnées respectives(x;y),(0;a)et(a;0)dansR. Pour(x;y)2R2,f(x;y) =MA+MB>AB=ap2 avec

égalité si et seulement siM2[AB]. Donc

Le minimum defsurR2existe et vautap2.

Correction de

l"exer cice

9 NSoitjune application de classeC2surRpuisfl"application définie surUpar8(x;y)2U,f(x;y) =jyx

vérifie : 3. jyx jyx yx 2j0yxquotesdbs_dbs35.pdfusesText_40
[PDF] exercice dérivée partielle corrigé

[PDF] multiple et diviseur 4eme controle

[PDF] detection de contours traitement d'image

[PDF] filtre moyenneur traitement dimage

[PDF] filtre gaussien matlab traitement d'image

[PDF] moteur de recherche internet

[PDF] moteur de recherche francais

[PDF] francis ponge le parti pris des choses pdf

[PDF] les moteurs de recherche les plus utilisés

[PDF] francis ponge mouvement

[PDF] moteur de recherche définition

[PDF] francis ponge biographie

[PDF] moteurs de recherche gratuits

[PDF] meilleur moteur de recherche

[PDF] moteur de recherche mozilla