[PDF] Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat


Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat


Previous PDF Next PDF



Support de cours du module -Maths 3- Destiné aux étudiants de la

Monier Mathématiques Méthodes et exercices ECS 2e année. Editions Dunod



Programme Pédagogique Socle commun 3eme semestre

Matière 2 : Electrotechnique fondamentale 1 (VHS: 45h00 Cours : 1h30



[PDF] Algèbre - Exo7 - Cours de mathématiques

année en cours. 2. Calculer les racines 5-ième de i. 3. Calculer les racines ... deuxième itération. On ne touche plus à la ligne 2 et on remplace la ligne 1 ...



Cours de probabilités et statistiques

Exemple 59 Soit un caract`ere X qui suit une loi de Poisson de param`etre inconnu λ. (ex : nombre de suicides ayant lieu dans le métro lyonnais chaque année).



Chapitre 4 - Séries numériques (résumé de cours)

On dira aussi que la série converge simplement (CS) si elle converge mais pas absolument. On peut définir de même la notion de convergence de la série 



Séries numériques

Dans un deuxième temps on va faire un développement limité en « ». (. ( )). ( ) est le terme général d'une série de Riemann divergente donc la série de terme 



Math 3 A5 Math 3 A5

Cette annale comporte trois parties : Première partie : résumé du cours par chapitre ;. Deuxième partie : énoncés des épreuves du BEPC ;. Troisième partie 



EMPLOIS DU TEMPS ET RÉPARTITION DES ENSEIGNEMENTS

2eme Année LICENCE GENIE CIVIL. Section B. Page 5. Université Mouloud Mammeri PR-ST. HAMIDI. BENKEDDACHE. BENKEDDACHE. BENKEDDACHE. BENKEDDACHE. 1.5. 0.0.



MINISTER DE LVENSEIGNEMENT SUPERIEUR ET DE LA

Cours Mathématiques 3 2 année LMD"Sciences et Techniques avec les fiches TD 2 xe; + 2e; + c



[PDF] Cours de Mathématiques

23 mar 2011 · De même en soustrayant la deuxième équation à la première et en divisant dernières années de sa vie alors qu'il était devenu aveugle



[PDF] Outils mathématiques ( Math 3) - BENSID Sabri

21 jui 2014 · Rappels de cours et exercices corrigés sur les suites numériques séries Il s'adresse aux étudiants de deuxi`eme année de Licence des 



[PDF] Solution Fiche de TD N°2 Mathématiques 3 - USTO

Université des Sciences et de la Technologie Mohammad Boudiaf d'Oran Faculté d'Architecture et de Génie Civil Département d'Hydraulique - 2ème Année 



[PDF] Chapitre 3 Intégrale double

Définition 3 2 (fonction en escalier sur un rectangle fermé) Soit R = [a b] × [c d] (a



[PDF] Support de Cours dAnalyse 3 avec Exercices Corrigés - E - Learning

Le niveau mathématique requis est celui de la premi`ere année Licence M A M I ou encore S T Le contenu de cette mati`ere est la base de toute introduction 



[PDF] annales mathematiques 3 - Faso e-Education

l'épreuve de mathématiques Cette annale comporte trois parties : Première partie : résumé du cours par chapitre ; Deuxième partie : énoncés des épreuves 



[PDF] st1an48_lessons-math3_beddanipdf

Cours Mathématiques 3 2 année LMD"Sciences et Techniques avec les fiches TD corrigées 2 xe; + 2e; + c c + R Changement de variable



[PDF] Livre du professeur - Corrigé Info

Dans « J'apprends le cours » une autre définition est proposée En comparant avec le produit obtenu à la 2e ligne on Ha - St - Ho - Co



[PDF] Cours complet de mathématiques pures T 1 / par L-B Francoeur

de Saint-Pétersbourg des Sociétés Philomatique d'Encouragement (La HARPE Cours de littérature' 2e part Racinesdes équatious 2e degré 137



[PDF] Programme Pédagogique Socle commun 3eme semestre

Objectifs de l'enseignement: À la fin de ce cours l'étudiant(e) devrait être en mesure de connaître les différents types de séries et ses 

Cours de Mathématiques

Sup MPSI PCSI PTSI TSI

En partenariat avec l'association Sésamath http://www.sesamath.net et le site http://www.les-mathematiques.net

Document en cours de relecture

Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron

23 mars 2011

Table des matières1 Nombres complexes19

1.1 Le corpsCdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 20

1.1.2 Construction deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Propriétés des opérations surC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Partie réelle, partie imaginaire d'un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

1.3 Représentation géométrique des complexes . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Représentation d'Argand . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 23

1.3.2 Interprétation géométrique de quelques opérations .. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Module d'un nombre complexe, inégalités triangulaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 GroupeUdes nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 26

1.6 Argument, fonction exponentielle complexe . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.1 Argument d'un nombre complexe . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 32

1.7 Racinesn-ièmes de l'unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 33

1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 35

1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 35

1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 36

1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 37

1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 37

1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37

1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 38

1.10 Transformations remarquables du plan . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 38

1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 38

1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 39

1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 42

1.11.2 Polynômes, équations, racines de l'unité . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 43

1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 49

1.11.4 Application des nombres complexes à la géométrie . . .. . . . . . . . . . . . . . . . . . . . . . . . 53

1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 60

2 Géométrie élémentaire du plan62

2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 63

2.1.2 Produit d'un vecteur et d'un réel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 63

2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 64

2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 64

2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 64

2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 64

2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 67

2

Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 68

2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 69

Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70

2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 70

2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 70

2.3.2 Interprétation en terme de projection . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 70

2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71

2.3.4 Interprétation en termes de nombres complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 72

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 72

2.4.2 Interprétation en terme d'aire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 73

2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 73

2.4.4 Interprétation en terme de nombres complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 74

2.4.5 Applicationdudéterminant: résolutiond'unsystèmelinéairede Cramer dedeuxéquationsà deux

inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 74

2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 75

2.5.2 Lignes de niveau deMu.AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.3 Lignes de niveau deMdet

u,AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4 Représentation paramétrique d'une droite . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 76

2.5.5 Équation cartésienne d'une droite . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 77

2.5.6 Droite définie par deux points distincts . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.7 Droite définie par un point et un vecteur normal . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.8 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 78

2.5.9 Équation normale d'une droite . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 79

2.5.10 Équation polaire d'une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 80

2.5.11 Intersection de deux droites, droites parallèles . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 81

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

2.6.2 Équation cartésienne d'un cercle . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 81

2.6.3 Représentation paramétrique d'un cercle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 82

2.6.4 Équation polaire d'un cercle passant par l'origine d'un repère . . . . . . . . . . . . . . . . . . . . . 83

2.6.5 Caractérisation d'un cercle par l'équationMA.MB0. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.6 Intersection d'un cercle et d'une droite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 84

2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 87

2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 87

2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 88

2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 95

2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 99

2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 109

2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 111

3 Géométrie élémentaire de l'espace113

3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 113

3.1.1 Combinaisons linéaires de vecteurs, droites et plansdans l'espace . . . . . . . . . . . . . . . . . . 113

3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 114

3.1.3 Orientation de l'espace, base orthonormale directe .. . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Mode de repérage dans l'espace . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 116

3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 116

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 116

Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 116

Norme d'un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 117

3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 118

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 119

3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 119

3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 121

3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 121

3.4.2 Interprétation géométrique du produit vectoriel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 122

3

3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 122

Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 122

Quelques exemples d'applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 123

3.4.4 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 124

3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 124

3.5.2 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 125

3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 126

3.6 Plans dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 127

3.6.1 Représentation paramétrique des plans . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 127

3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 127

Interprétation géométrique de l'équation normale . . . . . . .. . . . . . . . . . . . . . . . . . . . . 128

Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 129

3.6.3 Distance d'un point à un plan . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 129

Deux méthodes de calcul de la distance d'un point à un plan . . .. . . . . . . . . . . . . . . . . . 130

3.7 Droites dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.3 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 132

3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 132

3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 135

3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 135

3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 136

3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 136

3.9.2 Coordonnées cartésiennes dans l'espace . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 138

3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 147

4 Fonctions usuelles151

4.1 Fonctions logarithmes, exponentielles et puissances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 152

4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 154

4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 156

4.1.4 Exponentielle de basea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 158

4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159

4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 162

4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 163

4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 165

4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 166

Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 168

4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 169

4.3.3 Fonctions hyperboliquesinverses . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 169

Fonction argument sinus hyperboliqueargsh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Fonction Argument cosinus hyperboliqueargch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Fonction Argument tangente hyperboliqueargth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 173

4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 176

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 178

4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 184

4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 193

4

5 Equations différentielles linéaires198

5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 198

5.2 Deux caractérisations de la fonction exponentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Caractérisation par une équation différentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.2 Caractérisation par une équation fonctionnelle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Équation différentielle linéaire du premier ordre . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 199

5.3.2 Résolution de l'équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 200

5.3.3 Résolution de l'équation différentielle normaliséeavec second membre . . . . . . . . . . . . . . . 202

5.3.4 Détermination de solutions particulières . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 203

Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 203

Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 203

Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 205

5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206

5.3.6 Méthode d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4 Équations différentielles linéaires du second ordre . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4.2 Résolution de l'équation différentielle homogène dusecond ordre dansC. . . . . . . . . . . . . . 210

5.4.3 Résolution de l'équation différentielle homogène dusecond ordre dansR. . . . . . . . . . . . . . 212

5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 213

5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 217

5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.5.2 Équations différentielles linéaires du second ordreà coefficients constants . . . . . . . . . . . . . . 221

5.5.3 Résolution par changement de fonction inconnue . . . . .. . . . . . . . . . . . . . . . . . . . . . . 222

5.5.4 Résolution d'équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 224

5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 225

5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 227

6 Étude des courbes planes230

6.1 Fonctions à valeurs dansR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 230

6.1.2 Dérivation du produit scalaire et du déterminant . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 232

6.2 Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 233

6.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 233

6.2.2 Étude locale d'un arc paramétrée . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 233

Étude d'un point stationnaire avec des outils de terminale,première période . . . . . . . . . . . . 234

Étude d'un point stationnaire avec les développements limités, seconde période . . . . . . . . . . 234

Branches infinies des courbes paramétrées . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 237

6.2.3 Étude complète et tracé d'une courbe paramétrée . . . . .. . . . . . . . . . . . . . . . . . . . . . . 240

6.3 Etude d'une courbe polairef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 244

6.3.2 Etude d'une courbef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.3.3 La cardioïde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 246

6.3.4 La strophoïde droite . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 247

6.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 248

6.4.1 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 248

6.4.2 Courbes en coordonnées cartésiennes . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 248

6.4.3 Courbes polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 263

7 Coniques271

7.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 272

7.1.1 Définition monofocale . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 272

7.1.2 Équation cartésienne d'une conique . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 272

7.1.3 Équation polaire d'une conique . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 273

7.2 Étude de la parabole :e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.3 Étude de l'ellipse :0e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7.4 Étude de l'hyperbole :1e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.5 Définition bifocale de l'ellipse et de l'hyperbole . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.6 Courbes algébriques dans le plan . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 282

7.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 286

5

7.7.1 En général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 286

7.7.2 Paraboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 286

7.7.3 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 288

7.7.4 Hyperboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 291

7.7.5 Coniques et coordonnées polaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 294

7.7.6 Courbes du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 295

8 Nombres entiers naturels, ensembles finis, dénombrements304

8.1 Ensemble des entiers naturels - Récurrence . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 304

8.1.1 Ensemble des entiers naturels . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 304

8.1.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 305

8.1.3 Suite définie par récurrence . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 306

8.1.4 Notationset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.1.5 Suites arithmétiques et géométriques . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 307

8.2 Ensembles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 308

8.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 308

8.2.2 Propriétés des cardinaux . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 308

8.2.3 Applications entre ensembles finis . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 310

8.3 Opérations sur les ensembles finis . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 310

8.4 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 312

8.4.1 Nombre dep-listes d'un ensemble fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 312

8.4.2 Nombre d'applications d'un ensemble fini dans un ensemble fini . . . . . . . . . . . . . . . . . . . 312

8.4.3 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.4.4 Combinaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 318

8.5.1 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 318

8.5.2 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 323

8.5.3 Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 325

8.5.4 Factorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 326

8.5.5 Coefficients binomiaux, calculs de somme . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 326

8.5.6 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 332

9 CorpsRdes nombres réels339

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 339

quotesdbs_dbs50.pdfusesText_50
[PDF] cours mathematique adulte

[PDF] cours mathématiques théorie des ensembles

[PDF] cours maths 1st2s

[PDF] cours maths 3eme pdf

[PDF] cours maths 6ème gratuit

[PDF] cours maths appliqués

[PDF] cours maths bcpst pdf

[PDF] cours maths bts design d'espace

[PDF] cours maths cap coiffure

[PDF] cours maths cap pdf

[PDF] cours maths l1 eco gestion

[PDF] cours maths licence 1

[PDF] cours maths licence 1 pdf

[PDF] cours maths licence 3 pdf

[PDF] cours maths mp louis le grand