[PDF] The theory of heat radiation and refraction may be &





Previous PDF Next PDF



The world as will and idea

thoroughly versed in their philosophy says in his " Amphi- theatro



The theory of heat radiation

and refraction may be " regular" there being a single reflected ray according to the simple law of reflection and a single trans.



Étude expérimentale de lévaporation flash dun film deau

Nov 12 2020 grandeur adirnensionnée relative à la grandeur physique X ... des divers phénomènes optiques (absorption



Effets à long terme de la prématurité sur les habiletés perceptivo

Nov 15 2019 developmental index ou MDI et Psychomotor developmental index ou PDI) ... Developmental coordination disorder in "apparently.



The Translation Studies Reader.pdf

REFRACTION IN A THEORY OF LITERATURE. 19 William Frawley. 250. PROLEGOMENON TO A THEORY OF TRANSLATION. 20 Philip E.Lewis. 264. THE MEASURE OF TRANSLATION 



OPTics

conditions more on evanescent waves



MATHEMATICS

"by any attempt to dissociate it from its history.". J. W. L. GLAISHMR gatfc. MACMILLAN AND CO.



time-and-free-will-bergson.pdf

of opinion is part of the whole evolution". philosophic la physique



CURSUSINGENIEURSUPELEC

Par ailleurs pour être en conformité avec l'exercice d'un emploi



book-ethics for the information age.pdf

the machine to help them compute the motion of Mars and the refraction of starlight. Difference engines were never widely used; the technology was eclipsed 

ASTRONOMYDEPT,

THETHEORYOFHEATRADIATION

PLANCKANDMASIUS

Li

THETHEORY

OF

HEATRADIATION

BY

DR.MAXPLANCK

AUTHORISEDJTRANSLATION

BY

MORTONJVUSIUS,M.A.,Ph.D.(Leipzig)

WITH7ILLUSTRATIONS

PHILADELPHIA

P.BLAKISTONSSON&CO.

1012WALNUTSTREET

SEP29

ASTRONOMYDEFT;

COPYRIGHT,1914,BYP.BLAKISTONSSON&Co.

THE.MAPLHPRESS-YORK-PA

TRANSLATORSPREFACE

ofreasoninginaforeignlanguage. toobriefortopresentsomedifficulties. viTRANSLATORSPREFACE scriptandthegalleyproof.MORTONMASIUS.

WORCESTER,MASS.,

February,1914.

PREFACETOSECONDEDITION

vii viiiPREFACETOSECONDEDITION

PREFACETOSECONDEDITIONix

discussalldifferingopinions. quantumofactionpromisestothrowsomelight. generation.

THEAUTHOR.

BERLIN,

November,1912.

PREFACETOFIRSTEDITION

asregardsspecialdetails. XI

TABLEOFCONTENTS

PARTI

FUNDAMENTALFACTSANDDEFINITIONS

CHAPTERPAGE

I.GeneralIntroduction1

BlackRadiation22

PARTII

,I.MaxwellsRadiationPressure49

II.Stefan-BoltzmannLawofRadiation59

III.WiensDisplacementLaw69

PARTIII

ENTROPYANDPROBABILITY

II.IdealMonatomicGases127

III.IdealLinearOscillators135

Equilibrium144

PARTIV

ASYSTEMOFOSCILLATORSINASTATIONARYFIELDOF

RADIATION

II.AbsorbedEnergy155

III.EmittedEnergy.StationaryState161

QuantaofMatterandofElectricity167

xiii xivTABLEOFCONTENTS PARTV

IRREVERSIBLERADIATIONPROCESSES

I.FieldsofRadiationinGeneral189

II.OneOscillatorintheFieldofRadiation196

III.ASystemofOscillators200

bytheAuthor216

Appendices218

Errata..225

PARTI

FUNDAMENTALFACTSANDDEFINITIONS

RADIATIONOFHEAT

CHAPTERI

GENERALINTRODUCTION

conduction. 1

2FUNDAMENTALFACTSANDDEFINITIONS

speakofthe " giverisetoanyparticulardifficulty.

GENERALINTRODUCTION3

wespeakof phenomenatobeconsidered.

4FUNDAMENTALFACTSANDDEFINITIONS

randomundirectedheatmotioncannotbemade. firstthethreeprocessesjustmentioned. otherformsofenergy(heat,

1chemicalorelectricenergy,etc.)

lessintenseradiations. "heat."(Tr.)

GENERALINTRODUCTION5

r >v.The

6FUNDAMENTALFACTSANDDEFINITIONS

the alsobefinite. prism. elementdrto dtdT-dttdv2*,.(1) conicalelementsdttis4,w,weget: CO dt-dr.SwI<,dv.t(2)

GENERALINTRODUCTION7

weaker,BastrongeremitterthanA. giventhecommonname "phenomenaofluminescence."We shalldealwithpure pletelydeterminedbythetemperature. nonof " chemically. p.155,1904.

8FUNDAMENTALFACTSANDDEFINITIONS

erlyregardedasopticallyhomogeneous,

1providedonlythatthe

turbidbythepresenceofmolecules. phereasbytheairmoleculesthemselves. tionisproportionaltos,say fts(3) radiationandiscalledthe appliedtoanymaterialsubstance.

GENERALINTRODUCTION9

forraysofshorterwavelength;

1hencethebluecolorofdiffuse

skylight. anyfurtherdiscussionofthesequestions. andrefractionmaybe " regular,"therebeingasinglereflected medium. iLordRayleigh,Phil.Mag.,47,p.379,1899.

10FUNDAMENTALFACTSANDDEFINITIONS

called "black."

Inadditionto

used.AccordingtoG.Kirchhoff

1itdenotesabodywhichhas

thesurface.2 definition. body.

GENERALINTRODUCTION11

12.Absorption.Heatraysaredestroyedby

" absorption." isused. andmaybewritten a,s(4)

Hereavisknownasthe

peratureT,andthenatureofthemedium. small,containsmanywavelengths(Sec.2).

12FUNDAMENTALFACTSANDDEFINITIONS

ray,butonadefinitepositioninspace. when >=!

GENERALINTRODUCTION13

surface. andbyanazimuth coneis d!2=sin0-d6-d<i>.(5) do-inthedirectionoftheconedttis: dtdo-cosddttK=Ksin6cosdd d<t>do-dt.(6) stitutingTTforandTT+ <for precedingone. integratingwithrespectto (/>fromto2irandwithrespectto

7Tfromto-

27T2
I <*0f t/ot/o ddKsincos8do-dt.

14FUNDAMENTALFACTSANDDEFINITIONS

TTKd<jdt.(7)

Fromapencilofrayscalled

"parallel "afiniteamountofenergyof narrowcone. homogeneousormonochromatic. intensitymaybewrittenintheform

K.cosV+K/sinV

andK.sinV+K/cosV(8)

GENERALINTRODUCTION15

the v.

Hencewecallthesevaluesthe

"principalvaluesoftheintensi maywritegenerally I (9) CO dtdo-cos6dQIdv(K.+K/)(10)I K,:

ForunpolarizedraysK,=K/,andhence

oo

K=2CdvK,,(12)=2CdvK

2dtdo-cos$dtiK,dv=2dtdo-sin6cosdd

d<j>K,dv.(13) foundfrom(7)and(12);itis

27rdadt1Kvdv.(14)I

16FUNDAMENTALFACTSANDDEFINITIONS

Thiswillbefurtherdiscussedlateron.

from v=\(15)A qdXdv--* isobtained.Hencewegetbysubstitution:

E,=.(16)

GENERALINTRODUCTION17

lineardimensionsoftheelementsdaandda fbutstillsosmall manousmedia. angleis dacos(/,r)^-

I"

where/denotesthenormalofda fandtheangle(v 1 ,r)istobe ofthevertexoftheconeonda. radiationrequiredisfoundtobe:

ArArcos(r,r)-cos(/,r)K----at.(17)

energywillbe,accordingtoequation(11), dadacos(v,r)cos(i>,r)

K,,dv--dt.(18)r2

ifwechoosedalargecomparedwithda.

18FUNDAMENTALFACTSANDDEFINITIONS

"focalplanes"ofthepencil. thatcasethe "cross-section "ofthewholepencilatadefinite

GENERALINTRODUCTION19

liesataninfinitedistance. ofradiusr,rbeinglargecompared withthelineardimensionsofvbut stillsosmallthatnoappreciable absorptionorscatteringoftheradia tiontakesplaceinthedistancer (Fig.1).Everyraywhichreaches vmustthencomefromsomepoint onthesurfaceofthesphere.If, then,weatfirstconsideronlyallthe raysthatcomefromthepointsofan morethanonce.

20FUNDAMENTALFACTSANDDEFINITIONS

sis: certainelementofa hencetheenergyis: -f-f rdaJ~K=-S

2-Kda.(19)

fromdaandentervwehave

Kda_Kdo-

r2qr2q -ofa thesphere,wegetforthewholeenergy: -IKdQ. dividingbyv.Itis =-KdQ. lj (20)

GENERALINTRODUCTION21

onintegrationweget: trumweget: (22) -(K.+K/)dfi,(23)u,=Ii ij directions: STTK, u,=-(24)

CHAPTERII

inentropyispossible. significance. (Sec.52). 22

RADIATIONATTHERMODYNAMICEQUILIBRIUM23

scattering. theelementofarea.

24FUNDAMENTALFACTSANDDEFINITIONS

volume-elementv. CO dtVS-JTIdvV-STTI Jo chemicalnatureofthemedium. intensity(energyradiatedperunittime) da-~ 2-K spectrumseparately: 2da

Hencetheintensityofamonochromaticrayis:

2da*K,dv.

r2 thetimedtis,accordingto(4), dta,,s2da9K,dv. r2

RADIATIONATTHERMODYNAMICEQUILIBRIUM25

Cda= Jr*= 00 f,K, Jo dtvSirIavK,dv.(25) Jo oo =IOLK,,dv.f*,^=r JotJo frequencytherelation: e,=a,K,,or(26)

K,=(27)av

tionofthemediumforthisfrequency.

26FUNDAMENTALFACTSANDDEFINITIONS

whateverofthatcolor. raysofthefrequencyv.

RADIATIONATTHERMODYNAMICEQUILIBRIUM27

finitecoefficientofabsorption. similarto(25),namely, CO ftK,dv.(28) sionby-r-.Thisgives 00 fJo K,dv, dtvdSlhK,,dv.(29)

28FUNDAMENTALFACTSANDDEFINITIONS

otherrays. ousisotropicmediumwhichisinthermodynamic thiscasedt=l,6=0,by dadfiK,dv. .(30) mediumwereperfectlydiathermanous.

RADIATIONATTHERMODYNAMICEQUILIBRIUM29

byputting do- dt=l,dr=drr2dtt,dtt=-^TO andomittingthenumericalfactor2.Wethusget

E=drdttdae,dv.(31)

distances=drwehave or, dr and,byintegration, whichreachesisfoundtobe

E=Ee-(a

"+^ro=drdfido-c,*-**+**dv.(32) 00 d!2dadve,fdre-(a >+ft >)r=dttda^dv.(33)f 1

30FUNDAMENTALFACTSANDDEFINITIONS

fromwithout.TheradiationE fthuscollectedbythevolume- elementatrisfound,byputtingin(29), dt=1,v=drdQ,r do- tobe

E=drdQdaftK,dv.

rwefind:

E+E=drdttdo-(e,+ftK,)dv.

Thepartofthisreachingis,similarto(32):

drdtida(e,+ftK.)dve~ ro(a-"W theenergyultimatelyreachingdo- dtidafe+ftK,)d asmaybeseenbycomparisonwith(26).

RADIATIONATTHERMODYNAMICEQUILIBRIUM31

32FUNDAMENTALFACTSANDDEFINITIONS

ever.

RADIATIONATTHERMODYNAMICEQUILIBRIUM33

mediumandfallingontheboundingsurface.

BoundingSurface

FIG.3.

containedintheconicalelementdtt,quotesdbs_dbs47.pdfusesText_47
[PDF] lexercices physique chimie

[PDF] lexercices physique chimie 2

[PDF] lexique

[PDF] lexique anglais français pdf

[PDF] lexique art plastique

[PDF] lexique artistique

[PDF] lexique chanson

[PDF] lexique chimie pdf

[PDF] lexique chinois pdf

[PDF] lexique chinois voyage

[PDF] lexique cinématographique pdf

[PDF] Lexique d'imaginaire et d'imagination

[PDF] lexique d'un texte

[PDF] lexique de chimie pdf

[PDF] lexique de l'accord et du désaccord exercices