[PDF] 7 Lois de probabilité Il est à noter que le





Previous PDF Next PDF



Chapitre 2 - Variables Aléatoires

Proposition 1.16 Soit X une variable aléatoire de fonction de répartition FX. Si FX est continue sur R et dérivable sur R (sauf peut-être en un nombre fini de 



VARIABLES ALÉATOIRES

Définition : Soit une variable aléatoire X définie sur un univers ? et prenant les valeurs x1x2



Probabilités et variables aléatoires

On parle alors de loi diffuse ou de v.a.r. continue (voir définition 21). DÉFINITION 19. — Soit X une v.a.r. de fonction de répartition FX supposée strictement 



MODULE 6 VARIABLE ALÉATOIRE ALÉATOIRE

calculer et interpréter l'espérance et la variance d'une variable aléatoire. • calculer une probabilité sur une variable aléatoire continue.



Cours et exercices corrigés en probabilités

lois de probabilité continues le problème de transformation d'une variable aléatoire continue ainsi qu'une première approche concernant l'approximation 



Notion de Variable aléatoire - Lois dune variable aléatoire

f(x)dx = 1. Page 33. Variables alétoire continue: définition. Une variable aléatoire réelle X est dite à 



7 Lois de probabilité

Il est à noter que le nombre d'événements est une v.a. discrète tandis que le temps d'attente est une variable aléatoire continue. La variable aléatoire qui 



Cours de Statistiques inférentielles

variable aléatoire continue X. Elles donnent lieu aux représentations graphiques suivantes : Figure 1.1 – fonction répartition. La fonction de distribution 



Chapitre 2 Variables aléatoires

Variables aléatoires discrètes. Définition Une variable aléatoire notée (v.a) est dite discrète si l'ensemble des réalisations.



Vecteurs gaussiens

Remarque : Les composantes d'un vecteur gaussien sont des variables aléatoires gaussiennes mais la réciproque est fausse. En effet on considère X i N(0



[PDF] Variables Aléatoires

Une variable aléatoire X de Bernoulli est une variable qui ne prend que deux valeurs : l'échec (au quel on associe la valeur 0) et le succès (auquel on associe 



[PDF] VARIABLES ALÉATOIRES - maths et tiques

Partie 1 : Variable aléatoire et loi de probabilité 1) Variable aléatoire Méthode : Calculer une probabilité à l'aide d'une variable aléatoire



[PDF] Probabilités et variables aléatoires

Espérance et variance d'une variable aléatoires sont définies avant de signaler les deux théorèmes importants : loi des grands nombre et théorème de central 



[PDF] MODULE 6 Variable aléatoire - Université du Québec

Objectifs et compétences L'objectif de cette section est de donner à l'étudiant les outils nécessaires pour comprendre la notion de variable aléatoire et 



[PDF] Première S - Probabilités - Variable aléatoire - Parfenoff org

L'espérance d'une variable aléatoire est la moyenne des valeurs qu'elle prend en considérant que les probabilités sont les fréquences des valeurs • La variance 



[PDF] Variables aléatoires discrètes - Unisciel

1 - ECS 1 VARIABLES ALEATOIRES DISCRETES I - Généralités Définition : Si X est une variable aléatoire discrète définie sur un espace probabilisé



[PDF] Probabilités et variables aléatoires Préparation `a lagrégation interne

Finalement E(X)=1/p Exemple : Calcul de l'espérance d'une variable aléatoire Y de loi exponentielle c'est-`a-dire de densité 



[PDF] Variables Aléatoires - CPGE Brizeux

1 Variables aléatoires 1 1 Généralités notations Introduction Historiquement la notion de variable aléatoire a été introduite pour l'étude des gains 



[PDF] Espérance dune variable aléatoire - LAMA - Univ Savoie

Exemple Calculs d'espérances de variables aléatoires discrètes 1° Commençons par une v a X de loi uniforme sur {x1 xN }; 



[PDF] 10 - Variables aléatoires Cours complet - cpgedupuydelomefr

1 Variable aléatoire discrète Définition 1 1 : variable aléatoire discrète Théorème 3 2 : espérance d'une variable aléatoire discrète à valeurs dans – 

  • Comment définir une variable aléatoire ?

    Une variable aléatoire est une variable qui peut prendre différentes valeurs avec une probabilité définie pour chacune des occurences, au contraire d'une variable certaine qui ne prend qu'une seule valeur définie, avec une probabilité de 1.
  • Quelle est la loi de la variable aléatoire ?

    Une variable aléatoire X est une application définie sur ? dans ?. X permet de transporter la loi P en la loi P' définie sur ??=X(?) : on a P?(xj)=P(X?1(xj))=P(X=xj). La loi P? est appelée loi de X.
  • Comment montrer qu'une variable est une variable aléatoire ?

    On dit qu'une variable aléatoire X suit une loi de Bernoulli de paramètre p?[0,1] p ? [ 0 , 1 ] lorsque X est à valeurs dans {0,1} et que P(X=1)=p et P(X=0)=1?p.
  • Définition : Soit une variable aléatoire X définie sur E et prenant les valeurs x1,x2,, xn. La loi de probabilité de X associe à toute valeur xi la probabilité pi = P(X = xi).
fi

7Lois de probabilité

Les lois de probabilité permettent de décrire les variables aléatoires sous la forme d"une "expérience type» puis d"analyser cette expérience en détail pour pouvoir déduire les principales caractéristiques de toutes les expériences aléatoires qui sont du même type. Letravailestfaituneseulefoismaisilsertàtouteslesexpériencessemblables. L"évaluation delaloideprobabilitéetdescaractéristiquesétanteffectuée, l"utilisateurn"aplusà"con-

struire" les probabilités mais simplement à identifier le modèle et à utiliser les résultats

connus sur le modèle. On s"intéressera ici à quelques lois qui sont très fréquentes dans

le domaine de la gestion.

Objectifs et compétences

L"étudiant sera en mesure de

•calculer des probabilités sur la loi binomiale •associer une expérience aléatoire à une loi binomiale •calculer des probabilités sur la loi de Poisson •associer une expérience aléatoire à une loi de Poisson •calculer des probabilités sur la loi exponentielle •associer une expérience aléatoire suit à loi exponentielle •calculer des probabilités sur la loi normale •utiliser les propriétés de la loi normale pour effectuer des calculs de probabilité

Loi binomiale

Considérons l"expérience qui consiste à répéternfois une expérience aléatoire de façon

indépendante telle que le résultat de chaque expérience est un succès ou un échec avec

une probabilité de succèsπ. On peut représenter cette expérience type par la figure

2 Chapter 7 Lois de probabilité

suivante : PosonsXla variable aléatoire qui donne le nombre total de succès sur lesntentatives. La variable aléatoireXsuit une loi Binomiale de paramètresnetπ, notéeBin(n,π).

Le support de cette variable aléatoire est

S

X={0,1,2,···n}

et la loi de probabilité est donnée par f(x) =?n x? x(1-π)n-xpourx= 0,1,2,...n où0< π <1et?n x? =n! x!(n-x)! Les principales caractéristiques numériques sont :

Moyenne :E(X) =nπ

Variance :V ar(X) =nπ(1-π)

Ecart type :?

nπ(1-π) Voici un graphique représentant quelques lois binomiales avec une même valeur den, (n= 20) et quelques valeurs deπ.

Lois binomiales

x fonction de probabilité

0 5 10 15 20

0.0 0.05 0.10 0.15 0.20 0.25

Pi=0.1

Pi=0.25

Pi=0.5

Pi=0.75

Loi binomiale 3

Remarque 7.1Le cas particulier de la loi binomiale avec paramètren= 1etπest à la base de plusieurs modélisation. Il est aussi connu comme étant la loi deBernoulliou expérience de Bernoulli. La notion de succès et d"échec dans le cadre d"une loi binomiale est purement arbitraire. Ainsi, le fait qu"une nouvelle entreprise ne passe pas le cap de la première année peut être qualifié de succès si on s"intéresse au nombre de fermetures tout comme le fait

qu"un employé ne soit pas présent au travail une certaine journée peut être un succès si

on veut étudier le taux d"absentéisme. Exemple 7.1?On sait que la probabilité qu"une personne choisie au hasard travaille dans le domaine de l"administration ou de la comptabilité est de 1/6. Si on choisit au hasard 3 personnes, quelle est la probabilité d"avoir au moins 2 personnes sur 3 qui travaillent dans l"administration ou la comptabilité ? Solution :PosonsXla v.a. qui donne le nombre de personnes sur 3 qui travaillent dans l"administration ou la comptabilité,X≂Bin(3,1/6). On cherchePr(X≥2) :

Pr(X≥2) =f(2) +f(3)

=?3 2?? 1 6? 2?5 6? 3-2 +?3 3?? 16? 3?5 6? 0 =572+1216= 7.4074×10 -2 = 0.0741 Exemple 7.2?Dans une entreprise les ressources humaines font passer une entrevue préliminaire aux candidats et on sait par expérience que seulement 50% passent au travers de ce premier tri. Quelle est la probabilité que sur 5 candidats, il y en ait 4 ou plus qui passent la première entrevue ? Solution :PosonsXla v.a. qui donne le nombre de candidats sur 5 qui passent la première entrevue,X≂Bin(5,1/2)et on cherchePr(X≥4):

Pr(X≥4) =f(4) +f(5)

=?5 4?? 1 2? 4?1 2? 1 +?5 5?? 12? 5 =316

4 Chapter 7 Lois de probabilité

Exemple 7.3Les données disponibles sur la survie des entreprises démontrent que les nouvelles entreprises du domaine des communications ont une probabilité de passer le cap des 2 ans de0.20. Si 10 entreprises se sont implantées, quelle est la probabilité d"avoir au moins 4 "survivantes» après 2 ans ? Solution :PosonsXla v.a. qui donne le nombre d"entreprises qui passent le cap des deux ans. C"est une v.a. de loiBin(10,0.2)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x? (0.2) x(0.8)10-x = 1-.87913 =.12087 Exemple 7.4?Dans l"exemple précédant, si on sait qu"une entreprise en communi- cation qui passe le cap des 2 ans a une probabilité de2/3de devenir une grande entre- prise(plus de 50 employés), quelle est la probabilité d"obtenir 4 grandes entreprises en communication sur les 10 qui se sont implantées ? Solution:PosonsXlav.a. quidonnelenombred"entreprisessur10quisetransforment en une grande entreprise. C"est une v.a. de loiBin(10,π), oùπest la probabilité qu"une nouvelle entreprise en communication se transforme en une grande entreprise. Pour que la nouvelle entreprise devienne une grande entreprise, il faut qu"elle survive deux ans (disons l"événementA) et qu"elle se transforme en grande une entreprise (dis- ons l"événementB). Or

π= Pr(A∩B) = Pr(A)Pr(B|A)

2

1023=215puisque la probabilité de passer le cap des 2 ans est de 0.2 par le problème précédantet que la donnée du problème donnePr(B|A) = 2/3.

On a doncX≂Bin(10,

2

15)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x?? 2 15? x?13 15? 10-x = 1-.96596 =.03404 Remarque 7.2Pour qu"une variable aléatoire suive une loi binomiale, il faut que le

nombre de répétitions de l"expérience soit fixé a priori. De plus, les expériences doivent

Loi binomiale 5

être indépendantes c"est-à-dire que le résultat d"une des expériences n"affecte en aucune

façon les autres. Considérons l"exemple d"une population de 120 entreprises d"un certain secteur et sup- posons que sur ce nombre il y en a 51 qui sont conformes à la norme ISO 9200. Une expérience aléatoire consiste à prendre 15 entreprises au hasard parmi les 120. On veut évaluer la probabilité qu"il y ait au moins 8 entreprises parmi les 15 qui sont conformes

à la norme ISO 9200. Même si on répète 15 fois l"expérience consistant à choisir une

entreprise, ce ne sont pas des expériences indépendantes : il n"y a que 120 entreprises et chaque fois qu"une entreprise est choisie à un tirage cela affecte la probabilité au tirage suivant. Exemple 7.5?Un transporteur aérien doit remplir un avion de 330 places. Il vend

340 billets en sachant qu"il y a une probabilité de 2.5% qu"un passager ne se présente

pas. Solution :PosonsXla v.a. qui donne le nombre de passagers qui se présenteront sur les 340 billets vendus. On aX≂Bin(340,0.975). Cela veut dire qu"en moyenne il y aura340?0.975 = 331.5passagers par vol. En moyenne il y aura 1.5 passagers qui n"auront pas de place. Comme passager on peut vouloir connaître la probabilité qu"il manque de place. Cela s"exprime parPr(X >330)et en utilisant la formule 1

Pr(X >330) =f(331) +f(332) +···+f(340)

=?340331? 0.975

331(0.025)340-331+···

= 0.65381 Exemple 7.6?Dans un programme universitaire il y a 30% des étudiants qui dé- passent le temps prévu pour terminer le programme et 10% qui terminent au moins une session avant la fin du temps prévu. On sait que 3% des étudiants qui dépassent le temps ont une cote générale "A", que 20% de ceux qui finissent exactement dans les temps ont cette cote et que ce taux devient 50% pour ceux qui finissent avant. Sur une cohorte de

15 étudiants dans le programme quelle est la probabilité qu"il y ait au moins 4 étudiants

avec la cote générale "A" ? Solution :Considérons la v.a.Xqui donne le nombre d"étudiants sur 15 qui auront la cote générale "A". C"est une v.a. qui admet une loi binomiale de paramètresn= 15et π:la probabilité qu"un étudiant au hasard obtienne cette cote. On cherchePr(X≥4). Pour utiliser la fonction de probabilité de la loi binomiale il faut déterminer la valeur du paramètreπ.

1Ce calcul peut se faire à la calculatrice mais il est plus simple et surtout plus rapide d"utiliser un logiciel

comme EXCEL.

6 Chapter 7 Lois de probabilité

Si on poseB

1:"un étudiant dépasse le temps prévu",B2:"un étudiant termine exacte-

ment dans les délais,B

3un étudiant dépasse le temps prévu etA:"obtient la cote A".

L"utilisation de la première règle de Bayes permet d"obtenirπ= 0.179. On a alors

Pr(X≥4) = 1-Pr(X <4)

= 1-(f(0) +f(1) +f(2) +f(3)) oùf(x) =? 15 x?0.179x(1-0.179)15-x.

L"application de la formule donne

f(0) = 15!

0!15!×0.1790×0.82115= 5.1898×10-2

f(1) =15!

1!14!×0.1791×0.82114= 0.16973

f(2) = 15!

2!13!×0.1792×0.82113= 0.25903

f(3) = 15!

3!12!×0.1793×0.82112= 0.24473

et ainsi la probabilité recherchée est

Pr(X≥4) = 0.27461

Loi de Poisson

La loi de Poisson ou modèle de Poisson permet la modélisation de l"observation d"un phénomènequiproduitdesévénementsàunrythmeconnu. Ons"intéresseàl"observation d"événements et on suppose

1. un seul événement arrive à la fois

2. le nombre d"événements se produisant ne dépend que du temps de l"observation

3. les événements sont indépendants

ConsidéronsXla v.a. qui donne le nombre d"événements observés dans une unité de temps. On a alors un phénomène de Poisson et la variable aléatoire qui donne le nombre

d"événements par unité de temps suit une loi de Poisson, notéeX≂P(λ), oùλest

le nombre moyen d"événements par unité de temps.

Loi de Poisson 7

Les valeurs possibles de la variable aléatoire sont S

X={0,1,2,...}

et la loi de probabilité est donnée par f

X(x) =e

-λλx x!pourx= 0,1,2,... oùeet la fonction exponentielle au point 1 :e?2,71828. Les principales caractéris- tiques numériques sont :

Moyenne :E(X) =λ

Variance :V ar(X) =λ

Ecart type :⎷

Voici la représentation graphique de la distribution de Poisson pour quelques valeurs de

Lois de Poisson

x fonction de probabilité

0 5 10 15 20

0.0 0.1 0.2 0.3

lambda=1 lambda=4 lambda=8 lambda=15 Exemple 7.7?Dans le ciel au mois d"août il y a en moyenne 1000 étoiles filantes dans l"espace d"une heure. Quelle est la probabilité d"en voir plus de 10 en 1 minute ?quotesdbs_dbs35.pdfusesText_40
[PDF] variable aléatoire discrète

[PDF] fonction de répartition d'une variable aléatoire discrète

[PDF] variable aléatoire exemple

[PDF] soliman et françois 1er

[PDF] fonction de distribution statistique

[PDF] produit scalaire deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans le plan

[PDF] fonction de répartition d une variable aléatoire discrète

[PDF] multiplication coordonnées vecteurs

[PDF] variance

[PDF] multiplication d'un vecteur par un réel exercices

[PDF] produit vectoriel de deux vecteurs de dimension 2

[PDF] carré d'un vecteur

[PDF] multiplication de deux vecteurs colonnes

[PDF] produit scalaire vecteur 3d