[PDF] Produit vectoriel et déterminant cours de niveau secondaire II





Previous PDF Next PDF



3. Calcul vectoriel

La notion de vecteur peut être définie en dimension deux (le plan) ou trois 2. Si ? < 0 alors le produit ? ?v est le vecteur dont l'intensité a ? fois ...



Chapitre 2.3 – Le produit vectoriel

v et de trouver un vecteur perpendiculaire à ce plan. Puisqu'il y a deux choix possibles la règle de la main droite choisie l'orientation.



Déterminants

Cas de deux vecteurs dans R2. Définition et propriétés. Orientation. 2 Déterminant en dimension 3. Produit mixte et produit vectoriel.



Produit vectoriel dans lespace euclidien orienté de dimension 3

18 mai 2009 produit vectoriel de. ?? u par. ?? v lorsque les deux vecteurs ne sont pas colinéaires. Soit. ?? v1 un vecteur unitaire du plan vectoriel ...



GELE3222 - Chapitre 1

Le produit vectoriel de deux vecteurs A et B est un autre vecteur Si on conna?t 2 vecteurs de ce plan on utilise le produit vectoriel pour trouver le.



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

de vecteurs dans R. 2 et R. 3 ainsi que le produit vectoriel. Les prérequis On note u · v le produit scalaire de deux vecteurs et u la norme.



Produit mixte et produit vectoriel

2. On se donne un espace vectoriel E sur R de dimension quelconque éventuellement 3 pour Si x et y sont deux vecteurs arbitraires de l'espace vectoriel.



Sur le produit vectoriel

Il y a sur cette droite deux vecteurs opposés dont la norme est donnée par la formule ci-dessus et seul l'un des deux donne une base directe avec u v. 2. Page 



Chapitre IV Bases et dimension dun espace vectoriel

Par exemple deux vecteurs non colinéaires de ? dont dépend un vecteur de . Les plans vectoriels sont tous de dimension 2



Produit vectoriel et déterminant cours de niveau secondaire II

Définition géométrique du produit vectoriel de deux vecteurs. Etant donné deux vecteurs a b



Fiche explicative de la leçon : Produit vectoriel en 2D - Nagwa

Dans cette fiche explicative nous allons apprendre à déterminer le produit vectoriel de deux vecteurs dans le plan



[PDF] Vecteurs : Produit scalaire et produit vectoriel

Le produit scalaire de deux vecteurs est égal au produit du module de l'un par la mesure algébrique de la projection de l'autre sur lui • Forme analytique



[PDF] Chapitre 23 – Le produit vectoriel - Physique

Le produit vectoriel est une autre opération algébrique entre deux vecteurs dont le résultat est un vecteur On utilise l'opérateur « × » pour désigner le 



[PDF] Chapitre I : Rappel sur le calcul vectoriel

I 2 Scalaire et vecteur I 3 Opérations sur les vecteurs I 3 1 Somme et multiplication par un scalaire I 3 2 Produit scalaire I 3 3 Produit vectoriel



Produit vectoriel - Wikipédia

Produit vectoriel opération entre deux vecteurs dans un espace euclidien orienté de dimension 3 dont le résultat est un vecteur orthogonal aux deux vecteurs



[PDF] Sur le produit vectoriel

Il y a sur cette droite deux vecteurs opposés dont la norme est donnée par la formule ci-dessus et seul l'un des deux donne une base directe avec u v 2 Page 



[PDF] Produit scalaire produit vectoriel produit mixte

2 Produit scalaire dans l'espace vectoriel euclidien VR à 3 dimensions entre deux vecteurs quelconques x ? VR 3 et y ? VR 3 il est bien connu



[PDF] Produit vectoriel

2 Colinéarité 2 3 Orthogonalité 2 4 Une équation avec un produit vectoriel 2 d'inconnue x o`u u et v sont deux vecteurs fixés



[PDF] Produit vectoriel F2School

et on utilise le produit vectoriel de deux vecteurs de l'espace de dimension 3 2) Propriétés algébriques et géométriques du produit vectoriel



Produit vectoriel - Vikidia lencyclopédie des 8-13 ans

Le produit vectoriel de deux vecteurs est un vecteur dont les coordonnées dépendent de celles des deux vecteurs de départ (contrairement au produit scalaire 

  • Comment trouver le produit vectoriel de deux vecteurs ?

    Le produit vectoriel de deux vecteurs peut être calculé comme le déterminant d'une matrice trois fois trois où les éléments de la première ligne de la matrice sont les vecteurs unitaires ��, �� et �� pointant respectivement dans les directions des ��, ��, et ��.
  • Qu'est-ce que le produit vectoriel de deux vecteurs ?

    Le produit vectoriel de deux vecteurs est un vecteur dont les coordonnées dépendent de celles des deux vecteurs de départ (contrairement au produit scalaire où le résultat du produit de deux vecteurs est un scalaire (un nombre)). Le produit vectoriel s'applique seulement dans un espace en trois dimensions.
  • Le produit vectoriel est utilisé dans de nombreux domaines de la physique. Il peut notamment être utile pour calculer le couple sur un objet. Prenons l'exemple d'une roue de voiture qui peut tourner librement autour de son axe. Une force ? �� est appliquée à la roue en un point situé sur le bord de la roue.

3-ème année, mathématiques niveau avancé

Edition 2004-2005

§ 3 Produit vectoriel

ŸLiens hypertextes

Produit scalaire 3D:

Supports de cours de mathématiques, niveau secondaire II (page mère):

3.1 Construction

ŸDéfinition géométrique du produit vectoriel de deux vecteurs

Etant donné deux vecteurs a®

, b® , on appelle produit vectoriel des vecteurs a® , b® le vecteur c® , noté c® =a®

´b®

, défini de la manière suivante: dans le cas où a® , b® ne sont pas colinéaires, la direction de c® est définie par c®

¦a®

et c®

¦b®

le sens de c® est tel que que le triplet a® ,b® ,c® est direct, c'est-à-dire obéit à la règle de la main droite; la norme de c® est égale à l'aire du parallélogramme sous-tendu par a® ,b® , c'est-à-dire

þc®

þ=þa®

´b®

þ=þa®

þ×h=þa®

þ×þb®

þ×ýsinHjLý où j=a®

,b® a® b®c®jh dans le cas où a® , b® sont colinéaires, on a a® =0® ,b® =0® ousinHjL=0; c'est pourquoi on pose c® =a®

´b®

=0®

ProduitVectoriel-Determinant.nb15

ŸPropriétés

Première propriété

Il découle de la définition que, pour tout vecteur a® , on a a®´a®=0®

Deuxième propriété

´a®=-Ka®´b®

O HantisymétrieL

a® b a® ´b a® b b

´a®

Troisième propriété

Pour toute base orthonormée directe i®

,j® ,k® , on a i®

´j®

=k® ,j®

´k®

=i® ,k®

´i®

=j®

HrègledespermutationscycliquesL

i® j® k® En combinant les propriétés 2 et 3, on obtient j®

´i®

=-k® ,k®

´j®

=-i® ,i®

´k®

=-j®

ProduitVectoriel-Determinant.nb16

Quatrième propriété

Jl×a®N´b®

=l×Ka®´b® O

Dans le cas où l>0, la direction et le sens des deux expressions précédentes sont les mêmes; pour la norme, lorsqu'on

multiplie le côté a® par l, l'aire du parallélogramme est multilpliée par l (dans la figure, l=1.6): a® b® a®´b®l×a® l×a®´b®

Lorsque l<0, les sens des deux membres sont inversés; en effet, pour le membre de gauche, si a®

,b® ,c® est direct, c'est alors -a® ,b® ,-c® qui est direct (dans la figure, l=-1.6): a® b® a®´b®l×a® l×a®´b®

D'une manière analogue, on montre que

a®´Km×b®

O=m×Ka®´b®

O

ProduitVectoriel-Determinant.nb17

Cinquième propriété

Ja1+a2N´b®

=a1´b® +a2´b® a®´Kb1+b2O=a®´b1+a®´b2 Démontrons la propriété dans le cas particulier où les vecteurs a1 ,a2,b® sont coplanaires. a1a2a1+a2b®h1h2h1+h2i® j®

Dans une base orthonormée directe i®

,j® ,k® dont les deux premiers vecteurs sont dans le plan de la figure, les produits vectoriels sont des multiples de k® . Pour le cas de figure représenté,

þa1´b®

+a2´b® 0 0

þa1´b®

0 0

þa2´b®

þ=þa1´b®

þ+þa2´b®

h1×þb®

þ+h2×þb®

þ=Hh1+h2L×þb®

þ=þJa1+a2N´b®

Il y a d'autres cas de figures à envisager: il est possible que les deux aires doivent se soustraire, mais la démonstration

demeure semblable.

Quant au cas où les trois vecteurs ne sont pas coplanaires, nous renonçons à donner une démonstration, mais nous

effectuerons des vérifications au § 3.2. On regroupe les propriétés 4 et 5 en disant que le produit vectoriel est bilinéaire.

ProduitVectoriel-Determinant.nb18

ŸExpression analytique du produit vectoriel (ou définition algébrique du produit vectoriel)

En utilisant les propriétés précédentes, nous pouvons exprimer le produit vectoriel en composantes dans une base

orthonormée directe i® ,j® ,k® . Pour a®=a1i® +a2j® +a3k® a1 a2 a3 ;b® =b1i® +b2j® +b3k® b1 b2 b3 on a a®´b® =Ka1i® +a2j® +a3k®

O´Kb1i®

+b2j® +b3k® O= a1b1i®

´i®

+a1b2i®

´j®

+a1b3i®

´k®

+a2b1j®

´i®

a2b2j®

´j®

+a2b3j®

´k®

+a3b1k®

´i®

+a3b2k®

´j®

+a3b3k®

´k®

0® +a1b2k® +a1b3 K-j®

O+a2b1K-k®

O+0®

+a2b3i® +a3b1j® +a3b2K-i®

O+0®

Ha2b3-a3b2L i®

+Ha3b1-a1b3L j® +Ha1b2-a2b1L k® a1 a2 a3 b1 b2 b3 a2b3-a3b2 a3b1-a1b3 a1b2-a2b1

HVoirFormulairesettablesL

3.2 Vérifications

Puisque, dans l'établissement de la formule du produit vectoriel, nous avons sauté une démonstration, effectuons des

vérifications. ŸL'expression analytique du produit vectoriel possède les 5 propriétés du § 3.1 Ces vérifications sont laissées au soin du lecteur. ŸL'expression analytique du produit vectoriel vérifie la définition géométrique

Direction

c®×a®= a2b3-a3b2 a3b1-a1b3 a1b2-a2b1 a1 a2 a3 =Ha2b3-a3b2L a1+Ha3b1-a1b3L a2+Ha1b2-a2b1L a3= a1 a2b3-a1 a3b2+a2 a3b1-a1a2 b3+a1a3 b2-a2a3 b1=0Doncc®¦a®

D'une manière analogue c®

¦b®

Retenons le résultat:

Ka®´b®

O¦a®etKa®´b®

O¦b®

ProduitVectoriel-Determinant.nb19

Sens

Pour la base canonique i®

,j® ,k® , la vérification de la troisième propriété établit que le sens est correct. Nous reparlerons du cas général dans le § 4 en utilisant le critère du déterminant. Norme

Nous allons démontrer que

þa®´b®

þ2=þa®þ2þb®

þ2sin2 HjL

En effet, d'une part

þa®´b®

D'autre part,

þa®þ2þb®

þ2sin2 HjL=þa®þ2þb®

þ2I1-cos2 HjLM=

þa®þ2þb®

þ2-Kþa®þþb®

þcos HjLO

2 =þa®þ2þb®

þ2-Ka®×b®

O 2

Ia12+a22+a32M Ib12+b22+b32M-Ha1 b1+a2 b2+a3 b3L2=

a22b12+a32b12-2a1a2b1b2+a12b22+a32b22-

2a1a3b1b3-2a2a3b2b3+a12b32+a22b32

ce qui établit l'égalité suivante dans laquelle j désigne l'angle entre les vecteurs a®

et b®

þa®´b®

þ=þa®þ×þb®

þ×Ìsin HjLÌHVoirFormulairesettablesL

Géométriquement, la norme du produit vectoriel a®

´b®

représente l'aire du parallélogramme sous-tendu par les vecteurs a® ,b® , ce que nous notons comme suit:

Aire Kparallélogramme Ka®,b®

OO=þa®´b®

Cas particulier de deux vecteurs colinéaires

Si, par exemple, b®

=l×a® , alors a1 a2 a3 b1 b2 b3 a2b3-a3b2 a3b1-a1b3 a1b2-a2b1 a2la3-a3 la2 a3la1-a1la3 a1la2-a2la1 =0®

ProduitVectoriel-Determinant.nb20

ŸApplications du produit vectoriel

ŸAire d'un triangle

a® b® Géométriquement l'aire du triangle sous-tendu par les vecteurs a® ,b® est égal à la moitié de l'aire du parallélogramme sous-tendu par les vecteurs a® ,b®

Aire Ktriangle Ka®,b®

OO=1

2þa®´b®

ŸDistance d'un point à une droite

Soit C un point de l'espace et d une droite dont un point d'attache est A et un vecteur directeur est d®

. Notons d=distHC,dL la distance du point C à la droite d.

APQCdd

Introduisons les points P et Q définis par d® =AP=CQ. L'aire du parallélogramme APQC est égal, d'une part àd×þd® d'autre part àþd®

´ACþ. Donc

d=þd®

´ACþ

þd®

HVoirFormulairesettablesL

ProduitVectoriel-Determinant.nb21

§ 4 Déterminant

ŸDéfinition du déterminant (ou produit mixte) Le produit mixte suivant est appelé déterminant det Ka®,b® ,c®O=Ka®´b®

O×c®HVoirFormulairesettablesL

ŸInterprétation géométrique du déterminant Interprétons d'abord la valeur absolue du déterminant:

Ìdet Ka®,b®

,c®OÌ=þa®´b® þ×þc®þ×cos HjL=þa®´b®

þ×h

où j désigne l'angle entre a®

´b®

et c® tandis que h=þc® þ×cosHjL représente la hauteur du parallélépipède dont l'aire de la base est þa®

´b®

a® b®c® a®´b®j

La valeur absolue du déterminant représente le volume du parallélépipède sous-tendu par les vecteurs a®

,b® ,c® , ce que nous notons comme suit:

Vol Kparallélépipède Ka®,b®

,c®OO=Ìdet Ka®,b® ,c®OÌ Interprétons maintenant le signe du déterminant: deta® ,b® ,c® >0-cos(j) > 0 la base a® ,b® ,c® est directe (c'est-à-dire obéit à la règle de la main droite); deta® ,b® ,c® <0-cos(j) < 0 la base a® ,b® ,c® est rétrograde; deta® ,b® ,c® =0-a®

´b®

=0® ou c® =0 ou cosHjL=0 a® ,b® ,c® est un système linéairement dépendant.

ProduitVectoriel-Determinant.nb22

deta® ,b® ,c® =0-a®

´b®

=0® ou c® =0 ou cosHjL=0 a® ,b® ,c® est un système linéairement dépendant.

Plus rigoureusement, on établit d'abord que les bases se subdivisent en deux classes disjointes, selon leur orientation. La

règle de la main droite permet ensuite de sélectionner la classe des bases directes.

ŸPropriétés du déterminant

Les propriétés suivantes découlent de la définition, plus particulièrement des propriétés du produit vectoriel et du

produit scalaire: det Ka®,b® ,c®O=a®×Kb®

´c®O

Ka®,b®

,c®Oestlinéairementdépendant-det Ka®,b® ,c®O=0 det Ka®,b® ,c®O¹0-Ka®,b® ,c®Oestunebase

Le déterminant est multilinéaire, c'est-à-dire qu'il est linéaire pour chacun de ses arguments:

det Kl×a®,b® ,c®O=l×det Ka®,b® ,c®O, det Ka®,m×b® ,c®O=m×det Ka®,b® ,c®O,det Ka®,b® ,n×c®O=n×det Ka®,b® ,c®O det Ka1+a2,b® ,c®O=det Ka1,b® ,c®O+det Ka2,b® ,c®O det Ka®,b1+b2,c®O=det Ka®,b1,c®O+det Ka®,b2,c®O det Ka®,b® ,c1+c2O=det Ka®,b® ,c1O+det Ka®,b® ,c2O

Le déterminant est alterné, c'est-à-dire si on permute deux vecteurs-colonnes, le signe du déterminant est inversé:

det Kb® ,a®,c®O=-det Ka®,b® ,c®O,det Ka®,c®,b®

O=-det Ka®,b®

,c®O,

Le déterminant est normé, c'est-à-dire que le déterminant d'une base orthonormée directe vaut 1:

si Ki® ,j® ,k®

Oestunebaseorthonorméedirecte,det Ki®

,j® ,k® O=1

ŸExpression analytique du déterminant

Par rapport à une base orthonormée directe i® ,j® ,k® , introduisons les notations: det Ka®,b® ,c®O=det a1 a2 a3 b1 b2 b3 c1 c2 c3 =det a1b1c1 a2b2c2 a3b3c3 a1b1c1 a2b2c2 a3b3c3quotesdbs_dbs35.pdfusesText_40
[PDF] carré d'un vecteur

[PDF] multiplication de deux vecteurs colonnes

[PDF] produit scalaire vecteur 3d

[PDF] le resultat d'une multiplication s'appelle

[PDF] division vocabulaire

[PDF] vocabulaire multiplication

[PDF] loi géométrique probabilité exercices

[PDF] la santé définition

[PDF] fonction de répartition loi discrète

[PDF] les termes de la division

[PDF] difference entre loi binomiale et hypergeometrique

[PDF] fonction de répartition loi de bernoulli

[PDF] résultat d'une multiplication

[PDF] loi hypergéométrique calculatrice

[PDF] loi de bernoulli exemple