[PDF] LIMITES DES FONCTIONS Remarque : Lorsque x tend vers +?





Previous PDF Next PDF



LIMITES DES FONCTIONS

Remarque : Lorsque x tend vers +? la courbe de la fonction "se rapproche" de son asymptote. 2) Limite infinie à l'infini. Intuitivement : On dit que la 



Poursuite dactivité au-delà de la limite dâge *** FONCTIONNAIRES

La limite d'âge varie en fonction de la catégorie d'emploi occupé par l'agent active ou sédentaire. Un emploi de catégorie active dans la fonction publique 



LIMITES DES FONCTIONS (Partie 1)

LIMITES DES FONCTIONS. (Partie 1). Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM. I. Limite d'une fonction à l'infini. 1) Limite finie à l'infini.



LIMITES DES FONCTIONS (Partie 2)

Remarque : Dans le cas de limites infinies la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide. Exemple : 



DEVELOPPEMENTS LIMITÉS USUELS Le développement limité de

Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable s'écrit : /(x) = /(0) + x/'(0) +x2.



Limite dune fonction et dune suite - LEtudiant

Cette fiche présente des généralités sur les limites pour les suites et les fonctions. Les résultats présentés ici sont très importants mais aussi très 



FONCTION EXPONENTIELLE

Remarque : Dans le cas de limites infinies la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide. Exemple : 



FONCTION LOGARITHME NEPERIEN

La fonction ln est continue sur 0;+????? donc pour tout réel a > 0



Limites Suite Fonction

Limites de suites et de fonctions. I ] Suites. 1) Définition : Une suite réelle est une fonction de N dans R définie à partir d'un certain rang n0.



Chapitre 2 - Limites et continuité pour une fonction de plusieurs

L'adhérence de R2 {(0 0)} est R2. 2.2 Limite d'une fonction de plusieurs variables. On munit Rn d'une norme notée ·.

1

LIMITES DES FONCTIONS

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales. 2

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

3

Remarques :

• Lorsque tend vers +∞, la courbe de la fonction "se rapproche" de son asymptote. • On a une définition analogue en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher. 4

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à gauche de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à droite de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . 5

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2) -∞-425+∞ -∞-425+∞ +∞+∞ +∞5

56-∞

6

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim lim lim F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. PRODUIT ∞ désigne +∞ ou -∞ lim ∞ 0 lim lim F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim ≠0 0 lim ′≠0

0 ∞ ∞

0 lim ∞ 0 ∞ F.I. F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

F lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

7 b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3

2) Cas des formes indéterminée (non exigible)

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1) - NON EXIGIBLE

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • F lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3 +2 -6+1= M-3+ 2 6 1 N •lim 2 =lim 6 2 =lim 1 3 =0.

Donc, par limite d'une somme :

lim -3+ 2 6 1 =-3 •P lim -3+ 2 6 1 =-3 lim 8

Donc, par limite d'un produit :

lim M-3+ 2 6 1

N=-∞

Soit : lim

-3 +2 -6+1=-∞. Méthode : Lever une forme indéterminée à l'aide de factorisations - NON EXIGIBLE

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

Calculer : a) lim

2

2 -5+1

6

2 -5 b) lim

3

2 +2

4-1

Correction

a) • En appliquant la méthode précédente pour le numérateur et le dénominateur cela

conduirait à une forme indéterminée du type " • Levons l'indétermination en factorisant les monômes de plus haut degré :

2

-5+1

6

-5 2- 0 6- 2- 0 6- • lim 5 =lim 1quotesdbs_dbs4.pdfusesText_8
[PDF] limite fonction racine nième

[PDF] limite fonction rationnelle en 0

[PDF] limite fonction trigonométrique exercice corrigé

[PDF] limite forme indéterminée exponentielle

[PDF] Limite indeterminée

[PDF] Limite infinie d'une suite

[PDF] limite ln usuelles

[PDF] limite logarithme népérien en 0

[PDF] limite logarithme népérien et exponentielle

[PDF] limite math

[PDF] limite math forme indéterminée

[PDF] limite math tableau

[PDF] limite polynome en 0

[PDF] limite polynome terme plus haut degré

[PDF] Limite quanx x tend vers +oo