[PDF] LES SUITES (Partie 2) LES SUITES (Partie 2). I.





Previous PDF Next PDF



LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DE SUITES. I. Limite d'une suite géométrique. 1) Suite (qn).



Terminale S - Etude dune limite de suite

I) Limites de suite usuelle. 1) Suites de référence de limites finies. ? . ? +? Exemple 1 : Déterminer la limite de la suite =.



Terminale S - Etude de limites de suites définies par récurrence

Ce qui veut dire que si une suite ( ) converge alors sa limite est solution de l'équation (?) = ?. Mais attention: Trouver la ou les solutions de l' 



LES SUITES (Partie 2)

LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 : Soit (un) et (vn) deux suites définies sur ?.



Limites Suite Fonction

Limites de suites et de fonctions. I ] Suites. 1) Définition : Une suite réelle est une fonction de N dans R définie à partir d'un certain rang n0.



Partie 1 : Limite dune suite

Elle n'admet donc pas de limite finie ni infinie. Elle est donc divergente. 3) Limites des suites usuelles. Propriétés : - lim. I?.



LIMITE DUNE SUITE

Théorème (Limites de suites extraites) Soient (un)n? une suite réelle et ? ? . (i) Si lim n?+? un = ? alors pour toute fonction ? : ? 



Limite dune suite. Suites convergentes

On nomme suite divergente toute suite non convergente. b) Interprétation graphique sur un exemple. 1.3. Proposition. Si une suite admet une limite alors celle- 



Terminale S - Etude de limites de suites monotones

Ce théorème affirme la convergence mais il ne nous permet pas de connaitre précisément sa limite ?. ? Pour une suite croissante si M est un majorant de la 



Chapitre 1 Suites réelles et complexes

Proposition 1.2.2. Si une suite converge sa limite est unique. Démonstration. Soit (un) une suite convergeant vers deux limites l et l . Soit ? 

1

LES SUITES (Partie 2)

I. Limites et comparaison

1) Théorèmes de comparaison

Théorème 1 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =+∞ alors lim Par abus de langage, on pourrait dire que la suite (u n ) pousse la suite (v n ) vers +∞ à partir d'un certain rang.

Démonstration au programme :

Soit un nombre réel a.

- lim =+∞, donc l'intervalle contient tous les termes de la suite à partir d'un certain rang que l'on note n 1

On a donc pour tout í µâ‰¥í µ

6 - A partir d'un certain rang, que l'on note n 2 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), on a : í µ<í µ

On en déduit que l'intervalle

contient tous les termes de la suite (v n ) à partir du rang max(í µ 6

Et donc lim

Théorème 2 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =-∞ alors lim 2 Méthode : Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante : lim

-1 -1 ≥-1 donc í µ -1 -1

Or lim

-1=+∞ donc par comparaison lim -1

2) Théorème d'encadrement

Théorème des gendarmes :

Soit (u

n ), (v n ) et (w n ) trois suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =lim =í µ alors lim Par abus de langage, on pourrait dire que les suites (u n ) et (w n ) (les gendarmes) se resserrent autour de la suite (v n ) à partir d'un certain rang pour la faire converger vers la même limite. Ce théorème est également appelé le théorème du sandwich.

Démonstration :

Soit un intervalle ouvert I contenant L.

- lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 1 3 - lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 2 - A partir d'un certain rang, que l'on note n 3 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), l'intervalle I contient tous les termes de la suite (v n

Et donc lim

Méthode : Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : lim

1+

BCDí±¢

1 siní µ 1

Or : lim

1 =lim 1 =0 donc d'après le théorème des gendarmes lim siní µ =0

Et donc lim

1+

BCDí±¢

=1.

II. Suites majorées, minorées, bornées

1) Définitions :

Définitions : - La suite (u

n ) est majorée s'il existe un réel M tel que pour tout entier n ϵℕ, í µ - La suite (u n ) est minorée s'il existe un réel m tel que pour tout entier nϵℕ, í µ - La suite (u n ) est bornée si elle est à la fois majorée et minorée.

Exemples :

- Les suites de terme général cosí µ ou -1 sont bornées. - La suite de terme général n 2 est minorée par 0. Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u

n ) définie pour tout entier naturel n par í µ í±¢*6 6 +2 et O =2. Démontrer par récurrence que la suite (u n ) est majorée par 3. 4 • Initialisation : O =2<3

La propriété est donc vraie pour n = 0.

• Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie : í µ Q <3. - Démontrons que : La propriété est vraie au rang k+1 : í µ Q*6 <3.

On a : í µ

Q <3 donc 6 6

×3 et donc

6 +2< 6

×3+2.

Soit : í µ

Q*6 <3 • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : í µ <3.

2) Convergence des suites monotones

Propriété : Soit (u

n ) une suite croissante définie sur ℕ.

Si lim

=í µ alors la suite (u n ) est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit:"Il existe un rang p, tel que í µ T - L'intervalle ouvert Ví µ-1;í µ T

W contient L.

Or, par hypothèse, lim

=í µ. Donc l'intervalle Ví µ-1;í µ T

W contient tous les termes

de la suite (u n ) à partir d'un certain rang (1). - Comme (uquotesdbs_dbs47.pdfusesText_47
[PDF] limite suite définie par récurrence

[PDF] limite suite géométrique

[PDF] limite variation

[PDF] limite, fonction exponentielle et démonstration

[PDF] Limiter l'alcoolisme chez les jeunes

[PDF] Limiter l'atteinte à la biodiversité planétaire

[PDF] limiter le droits de greve

[PDF] Limiter les pertes d'énergie dans une habitation

[PDF] limiter nos libertés pour assurer notre sécurité?

[PDF] limites

[PDF] Limites & asymptote

[PDF] limites 'niveau terminale) début

[PDF] Limites aux libertés sur internet (devoir noté)

[PDF] limites cos et sin

[PDF] limites cosinus