[PDF] Probabilités et variables aléatoires





Previous PDF Next PDF



loi uniforme exercices corrigés. Document gratuit disponible sur

LOI UNIFORME. EXERCICES CORRIGES. Exercice n°1 (correction). X est une variable aléatoire qui suit la loi uniforme sur l'intervalle I.



Exercices de probabilités avec éléments de correction Memento

Loi de Poisson P(?) ? ?]0 +?[. N p(k) = e?? ?k k! Lois continues. Nom. Paramètres. Support Définition : P(A) = ?. A f(x)dx. Loi uniforme U([a



Loi de probabilité continue

Exemple. La loi uniforme sur [ab] a pour densité la fonction On appelle loi uniforme sur l'intervalle [a



LES LOIS A DENSITES : loi uniforme.

On passe d'un modèle discret (par exemple la loi binomiale où les valeurs possibles pour la variable aléatoire sont des nombres entiers) à un modèle continu (il 



Couples et vecteurs de variables aléatoires Préparation `a l

On trouve ici que X et Y suivent une loi uniforme sur {12



Cours de probabilités et statistiques

On peut considérer par exemple l'événement qui correspond `a Mis `a part le prestige dû `a son nom la loi uniforme est la loi de l'absence ...



Estimation paramétrique

modèle de Bernoulli X = (X1



UN EXEMPLE DINTRODUCTION DES LOIS A DENSITE EN

Mars 2020 - Avril 2020. UN EXEMPLE D'INTRODUCTION DE L'ESPERANCE. (LOI A DENSITE) ET DE LA LOI UNIFORME. EN TERMINALE S AU LYCEE DU COUDON (83).





LOIS À DENSITÉ

Pour cela on utilise la fonction de densité f définissant la loi de probabilité. Dans l'exemple précédent



[PDF] Terminale S - Loi uniforme Loi exponentielle - Parfenoff org

Exemple 2 : Le temps d'attente exprimé en minutes au guichet d'une banque est une variable aléatoire T suivant la loi exponentielle de paramètre On sait que 



[PDF] Loi uniforme - exercices corrigés - Maurimath

LOI UNIFORME EXERCICES CORRIGES Exercice n°1 (correction) X est une variable aléatoire qui suit la loi uniforme sur l'intervalle I



[PDF] Loi de probabilité continue

La loi uniforme est la version continue de la loi uniforme discrète Définition On appelle loi uniforme sur l'intervalle [ab] la variable aléatoire notée 



[PDF] LES LOIS A DENSITES : loi uniforme

Pour comprendre la loi uniforme on peut penser à des exemples du type : • Prendre un nombre au hasard entre deux nombres (il y a une infinité de valeurs) • La 



[PDF] Chapitre 4 : Lois de distribution continues

4 1 Loi uniforme Si toute valeur de X est équiprobable dans l'intervalle [ab] alors X suit une loi uniforme La fonction de densité est:



EMV de la loi uniforme - ENS Rennes

Exemples et applications Résultats : Soient X1 Xn des variables aléatoires de même loi uniforme U[0?] avec ? ? R? 4 vitesse et loi limite :



[PDF] loi-uniforme-exercicepdf - Jaicompris

Loi uniforme : Exercices Corrigés en vidéo avec le cours sur jaicompris com Loi uniforme et probl`eme de rendez-vous Anissa doit retrouver Manon au café 



[PDF] Loi continue : Partie II Loi uniforme sur [a ; b]

Propriété : Soit X une variable aléatoire qui suit une loi uniforme sur [a ; b] Exemple 1 : Caroline a dit qu'elle passerait voir Julien à un moment 



[PDF] LOIS À DENSITÉ - maths et tiques

1) Loi uniforme sur [0 ; 1] Exemple : Des machines remplissent des bouteilles de lait de 1 litre L'une d'entre elles est défectueuse et au passage de 

  • Comment savoir si une loi est uniforme ?

    Comment savoir si une loi est uniforme ? Il s'agit d'une loi uniforme si chaque issue a une probabilité égale d'arriver.
  • Pourquoi utiliser loi uniforme ?

    D'après le théorème cité plus haut, la loi uniforme permet en théorie d'obtenir des tirages de toute loi continue à densité. Il suffit pour cela d'inverser la Fonction de répartition de cette loi, et de l'appliquer à des tirages de la loi uniforme standard.
  • C'est quoi une probabilité uniforme ?

    En théorie des probabilités, une loi discrète uniforme est une loi de probabilité discrète pour laquelle la probabilité de réalisation est identique (équiprobabilité) pour chaque modalité d'un ensemble fini de modalités possibles.
  • La loi du couple (X, Y ) est définie par l'ensemble des probabilités : IP(X = x, Y = y) pour toutes valeurs possibles x et y. De même, pour y ? DY , on a IP(Y = y) = ?x?DX IP(X = x, Y = y).

Probabilités et variables aléatoires

Probabilités et variables aléatoires

Résumé

Ce chapitre introduit les concepts essentielles des modèles proba- bilistes afin d"aborder l"inférence statistique : définition d"un évé- nement aléatoire, des probabilités discrètes ou continues, des pro- babilités conditionnelles et de la notion d"indépendance en proba- bilités. Après avoir défini la notion de variable aléatoire, celles de lois les plus utilisées sont décrites : discrètes de Bernoulli; bino- miales, géométrique, de Poisson; continues uniforme, exponentielle, Gamma, normale, du chi-deux, de Student et de Fisher. Espérance et variance d"une variable aléatoires sont définies, avant de signaler les deux théorèmes importants : loi des grands nombre et théorème de central limite.

Retour au

plan du cour s

1 Introduction

Dans des domaines très différents comme les domaines scientifique, socio- logique ou médical, on s"intéresse à de nombreux phénomènes dans lesquels apparaît l"effet du hasard. Ces phénomènes sont caractérisés par le fait que les résultats des observations varient d"une expérience à l"autre. Une expérience est appelée "aléatoire" s"il est impossible de prévoir à l"avance son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats différents : succession d"appels à un standard téléphonique non surchar gé; observ ationde la durée de vie d"un indi viduanon ymedans une po pula- tion; observ ationde la durée de fonctionnement sans panne d"appareil ; jeu de pile ou f ace.

Voici d"autres exemples de domaines d"applications des probabilités.FiabilitéOn considère un système formé par plusieurs composants. On s"in-

téresse à la fiabilité du système : on va chercher à calculer la probabilité que le système fonctionne encore à un instant donné. Il faut pour cela connaître la probabilité que chacun des composants fonctionne à cet instant et tenir compte du fait que les composants ne fonctionnent peut-être pas indépendamment les uns des autres. Fatigue des matériauxLes données de fatigue des matériaux sont très dis- persées. On fait alors appel à des modélisations probabilistes et à des méthodes statistiques afin, par exemple, de construire des intervalles de confiance pour le nombre moyen de cycles jusqu"à la rupture. TélécommunicationsEn télécommunications, on doit souvent tenir compte du "bruit" dans les systèmes. Par exemple, supposons qu"un système émet soit un0, soit un1, et qu"il y a un risquepque le chiffre émis soit mal reçu. Il est alors intéressant de calculer la probabilité qu"un0ait été émis, sachant qu"un

0 a été reçu, ou encore la probabilité qu"il y ait une erreur de transmission.

2 Notion de probabilité

2.1 événement

DÉFINITION1. - On appelle univers associé à une expérience aléatoire l"en- semble de tous les résultats possibles de cette expérience.

Le choix de l"ensemble

comporte une part d"arbitraire. Il dépend de l"idée que l"on a, a priori, sur les résultats de l"expérience aléatoire. Donnons quelques exemples : 1.

On lance une pièce de monnaie. Pour l"ensemble

, on peut choisir soit =fpile, faceg, soit =fpile, face, trancheg: 2. On s"intéresse à l"état de fonctionnement d"un système. Dans ce cas f0;1gavec la convention0si le système est en panne et1s"il fonctionne. 3. Le résultat de l"e xpériencealéatoire est le nombre de tirages nécessaires dans un jeu de pile ou face jusqu"à l"obtention du premier "pile". Dans ce cas, =f1;2;3;g=N:1

Probabilités et variables aléatoires

4. On considère la succession des appels à un standard téléphonique non surchargé et l"on étudie la répartition des instants où le standard reçoit un appel, à partir d"un instant choisi comme origine (on admet que deux appels ne peuvent se produire rigoureusement au même instant et que le phénomène est limité dans le temps). Une réalisation de cet événement est une suite croissante de nombres réels positifstioùtidésigne l"instant d"enregistrement du i-ème appel : =f0< t1< t2<< tn< t n+1Nous constatons que peut être fini (exemples 1 et 2), dénombrable (exemples

3 et 5) ou non dénombrable (exemples 4 et 5). Lorsque

est fini ou dénom- brable, on parle d"univers discret. Sinon on parle d"univers continu. DÉFINITION2. - Etant donnée une expérience aléatoire, un événement aléa- toire est une partie de l"ensemble des résultats possibles de l"expérience, c"est donc un sous-ensembleAde l"univers . On dit que l"événementAest réalisé si le résultat!de l"expérience appartient àA. On sait que l"événementAest réalisé seulement une fois l"expérience aléatoire réalisée.

Exemples :

Si l"on s"intéresse à l"événement sui vant: "on a obtenu un chif frepair lors d"un lancer d"un dé à 6 faces", on introduitA=f2;4;6g, qui est un sous-ensemble de =f1;2;3;4;5;6g. Si l"on s"intéresse à l"événement sui vant: "la durée de vie du composant est supérieure ou égale à 1000 heures",A= [1000;+1[est un sous- ensemble de =R+. L"ensemble;est appelé l"événement impossible et est appelé l"événement certain.

2.2 Opérations sur les événements

Les événements aléatoires étant des ensembles, introduisons les opérations

ensemblistes classiques de la théorie des ensembles.DÉFINITION3. - On appelle événement contraire deA, notéAC, le complé-

mentaire deAdans A C=f!2 :! =2Ag: L"événement contraireACest réalisé si et seulement siAn"est pas réalisé. Exemple :SiAest l"événement "la durée de vie du composant est supérieure ou égale à 1000 heures" :A= [1000;+1[, l"événement contraire est l"événe- ment "la durée de vie du composant est strictement inférieure à 1000 heures" : A

C= [0;1000[.

DÉFINITION4. - SoientAetBdeux événements d"un univers L "événement" AetB" est celui qui est réalisé siAetBsont réalisés.

C"est l"intersection

A\B=f!2

:!2Aet!2Bg: L "événement" AouB" est celui qui est réalisé si l"un des deux est réalisé ou si les deux sont réalisés. C"est l"union

A[B=f!2

:!2Aou!2Bg: L "inclusionABsignifie que l"événementAne peut être réalisé sans queBle soit. DÉFINITION5. - Deux événementsAetBsont dits incompatibles si la réa- lisation de l"un implique la non-réalisation de l"autre.

Dans l"espace

, deux événements incompatibles sont représentés par deux parties disjointes. SiA\B=;, alorsAetBsont incompatibles. Il est clair, par exemple queAetACsont incompatibles.

2.3 Probabilité

Définition

DÉFINITION6. - Soit

un univers associé à une expérience aléatoire et soit

Al"ensemble des parties de

. Une probabilitéPsur l"espace( ;A)est une application deAdans[0;1]telle que2

Probabilités et variables aléatoires

1.P( ) = 1: 2. Si (An)n1est une famille d"événements deA2 à 2 incompatibles, P +1[n=1An =1X n=1P(An):

Le triplet(

;A;P)est appelé espace de probabilité. On peut déduire de la définition précédente un certain nombre de propriétés. PROPOSITION7. - SoientAetBdeux événements aléatoires.

1.P(;) = 0.

2.P

N[n=1An

NP n=1P(An): 3.

Si A1;:::;ANsont deux-à-deux incompatibles,

P

N[n=1An

=NX n=1P(An):

4.P(AC) = 1P(A).

5.

Si AB,P(A)P(B).

6.P(A[B) =P(A) +P(B)P(A\B):

7. Si est fini ou dénombrable, alors pour tout événementA,

P(A) =X

!2AP(f!g):

Exemple : Probabilité uniforme

Soit un ensemble fini : =f!1;:::;!Ng. Pour touti2 f1;2;:::;Ng, on poseP(f!ig) =1N :Alors, pour toute partieAde , on a

P(A) =X

!2AP(f!g) =Card(A)N =Card(A)Card( ):Dans le cas du lancer de dé à 6 faces, pour tout!2 f1;2;:::;6g,P(f!g) = 1=6. Si on note l"événement "on a obtenu un chiffre pair" parA=f2;4;6g, alors

P(A) = 3=6 = 1=2:

Remarques :Pour un problème donné, il y a souvent plusieurs modélisations possibles, c"est-à-dire que le choix de l"espace de probabilité n"est pas unique. Remarque :Choisir un élément au hasard signifie que les divers choix pos- sibles sont équiprobables, donc que l"ensemble est muni de la probabilité uniforme. Dans ce cas, tous les calculs sont simples et se ramènent souvent à des calculs d"analyse combinatoire.

2.4 Probabilités conditionnelles

Dans le chapitre précédent, on a parlé de la probabilité d"un événement sans tenir compte de la réalisation d"autres événements. En pratique, on peut considérer plusieurs événements, certains pouvant avoir une influence sur la réalisation d"autres événements. Exemple :On lance deux dés. Soient les événementsA=fla somme est

11getB=fle lancer du 1er dé donne6g. Il est clair que la réalisation deB

influe sur la réalisation deA. Supposons que l"on s"intéresse à la réalisation d"un événementA, tout en sachant qu"un événementBest réalisé. SiAetBsont incompatibles, alors la question est réglée :Ane se réalise pas. Mais siA\B6=;, il est possible queAse réalise. Cependant, l"espace des événements possibles n"est plus tout entier, mais il est restreint àB. En fait, seule nous intéresse la réalisation deAà l"intérieur deB, c"est-à-direA\Bpar rapport àB. Ceci justifie la définition suivante.

DÉFINITION8. - Soit(

;A;P)un espace de probabilité. SoientAetBdeux événements aléatoires tels queP(B)6= 0. On appelle probabilité condition- nelle deAsachantBla quantité

P(AjB) =P(A\B)P(B):3

Probabilités et variables aléatoires

Remarque :On a les égalités suivantes :

SiP(B)>0;P(A\B) =P(AjB)P(B):

SiP(A)>0;P(A\B) =P(BjA)P(A):

PROPOSITION9. -(formule des probabilités totales)Soit(Ai)i2Iune fa- mille d"événements aléatoires formant une partition de , c"est-à-dire tels que : -[i2IAi= -Ai\Aj=;pour touti6=j. On suppose de plus queP(Ai)6= 0pour touti2I. Alors

P(A) =X

i2IP(AjAi)P(Ai): PROPOSITION10. -(formule de Bayes)Sous les mêmes hypothèses que la proposition précédente, on a :

P(AijA) =P(AjAi)P(Ai)P

i2IP(AjAi)P(Ai): La formule de Bayes (publiée après sa mort en 1763) présente un grand intérêt car elle permet de modifier notre connaissance des probabilités en fonction d"informations nouvelles. Cette formule joue donc un rôle très important dans la statistique bayésienne.

2.5 Indépendance

DÉFINITION11. - Soit(

;A;P)un espace de probabilité, et soientAetB deux événements aléatoires. On dit queAetBsont indépendants si

P(A\B) =P(A)P(B):

Remarque :AetBsont indépendants si et seulement siP(AjB) =P(A): pas modifiée par une information concernant la réalisation de l"événementB.

PROPOSITION12. - SiAetBsont deux événements indépendants alors :-ACetBsont également indépendants;

-AetBCsont également indépendants; -ACetBCsont également indépendants. Nous allons maintenant définir l"indépendance de plus de 2 événements aléa- toires.

DÉFINITION13. - Soit(

;A;P)un espace de probabilité. Pourn2, soientA1;A2;:::An, des événements aléatoires. Ces événement ssont deux à deux indépendants si pour tout couple (i;j) aveci6=jon a

P(Ai\Aj) =P(Ai)P(Aj):

Ces événements s ontindépendants (dans leur ensemble) si pour tout k2 f2;3;:::;nget tout choix d"indices distinctsi1;:::;ik, on a

P(Ai1\Ai2\:::\Aik) =P(Ai1)P(Ai2):::P(Aik):

3 Notion de variable aléatoire

3.1 Introduction

Dans de nombreuses expériences aléatoires, on n"est pas intéressé direc- tement par le résultat de l"expérience, mais par une certaine fonction de ce résultat. Considérons par exemple l"expérience qui consiste à observer, pour chacune desnpièces produites par une machine, si la pièce est défectueuse ou non. Nous attribuerons la valeur1à une pièce défectueuse et la valeur0à une pièce en bon état. L"univers associé à cette expérience est =f0;1gn: Ce qui intéresse le fabricant est la proportion de pièces défectueuses pro- duites par la machine. Introduisons donc une fonction de dansRqui à tout != (!1;!2;:::;!n)de associe le nombre

X(!) =nX

i=1! in qui correspond à la proportion de pièces défectueuses associée à l"observation de!. Une telle fonctionXdéfinie sur et à valeurs dansRs"appelle une variable aléatoire réelle. 4

Probabilités et variables aléatoires

3.2 Définitions

Variable aléatoire réelle

DÉFINITION14. - Etant donné un univers

, une variable aléatoire réelle (v.a.r.) est une application de dansR: X:!2

7!X(!)2R:

Loi de probabilité

DÉFINITION15. - Soit

un univers muni d"une probabilitéP, et soitXune v.a.r. On appelle loi de probabilité deX, notéePX, l"application qui à toute partieAdeRassocie P

X(A) =P(f!2

:X(!)2Ag): Remarque :Dans la suite du cours, on utilisera la notation abrégée : P(f!2 :X(!)2Ag) =P(X2A). De même, on noteraP(X=x) la probabilitéP(f!2 :X(!) =xg). PROPOSITION16. - L"applicationPXdéfinit une probabilité surR.

Fonction de répartition

DÉFINITION17. - La fonction de répartition de la v.a.r.Xest définie par F

X(x) =P(Xx); x2R:

Propriétés de la fonction de répartition :

1.0FX1.

2.FXtend vers0en1et vers1en+1.

3.FXest croissante.

4.FXest continue à droite.

PROPOSITION18. - On a l"identité

P(a < Xb) =FX(b)FX(a);8a < b:Remarque :On montre facilement queFXest continue si et seulement si P(X=x) = 0pour toutx2R. On parle alors de loi diffuse ou de v.a.r. continue (voir définition 21
DÉFINITION19. - SoitXune v.a.r. de fonction de répartitionFXsupposée strictement croissante deIRdans]0;1[. Le quantile d"ordre2]0;1[de Xest le nombrex2Itel queFX(x) =;ce qui signifie que

P(Xx) =:

Remarques :

-x1=2est appelé médiane deX. La médiane vérifie les deux égalités

P(Xx1=2) = 1=2 =P(X > x1=2):

Dans lecasoùFXn"estpasstrictementcroissantemaissimplementcrois- sante, on définit le quantile d"ordrepar x = inffx2R:FX(x)g:

3.3 Variables aléatoires réelles discrètes

Définition

DÉFINITION20. - Une v.a.r.Xà valeurs dans un ensembleXfini ou dé- nombrable est appelée v.a.r. discrète. Dans ce cas, la loi deXest déterminée par l"ensemble des probabilités : P

X(x) =P(X=x); x2 X:

Ainsi, pour toute partieAdeX, on a alors :

P

X(A) =P(X2A) =X

x2AP(X=x) etPX(X) =X x2XP(X = x) = 1: Exemple :Supposons que l"on observe la durée de vieTd"une ampoule élec-quotesdbs_dbs35.pdfusesText_40
[PDF] variance loi uniforme démonstration

[PDF] fonction de répartition loi uniforme discrète

[PDF] variable statistique discrète

[PDF] la leçon (pièce de théâtre)

[PDF] ionesco la cantatrice chauve

[PDF] ionesco mouvement littéraire

[PDF] ionesco rhinocéros résumé

[PDF] fonction de service technologie 5ème

[PDF] fonction de service d'une maison

[PDF] fonction de contrainte

[PDF] différence entre fonction de service et fonction technique

[PDF] difference entre fonction de service et fonction d'usage

[PDF] fonction de service exemple

[PDF] fonction de service définition

[PDF] exercice multiplication 6ème ? imprimer