[PDF] LIMITES DES FONCTIONS (Partie 2)





Previous PDF Next PDF



LIMITES DES FONCTIONS

LIMITES DES FONCTIONS. I. Limite d'une fonction à l'infini. 1) Limite finie à l'infini. Intuitivement : On dit que la fonction admet pour limite L en +? 



LIMITES ET CONTINUITÉ (Partie 1)

Remarque : Lorsque x tend vers +? la courbe de la fonction "se rapproche" de son asymptote. La distance MN tend vers 0. 2) Limite infinie à l'infini.



Limites de fonctions - Lycée dAdultes

DERNIÈRE IMPRESSION LE 9 octobre 2014 à 9:32. Limites de fonctions. Table des matières. 1 Limite finie ou infinie à l'infini. 2. 1.1 Limitefinieàl'infini .



FONCTION LOGARITHME NEPERIEN

La fonction ln est continue sur 0;+????? donc pour tout réel a > 0



LIMITES DES FONCTIONS (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DES FONCTIONS. (Partie 1). Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM.



Cours danalyse 1 Licence 1er semestre

sinon est un prolongement par continuité de f. 4.2 Propriétés de la limite d'une fonction. Les propriétés des limites de suites se généralisent facilement au 



LIMITES DES FONCTIONS (Partie 2)

LIMITES DES FONCTIONS (Partie 2). Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM. I. Limite d'une fonction composée. Méthode : Déterminer la limite 



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Ce tome débute par l'étude des nombres réels puis des suites. Les chapitres suivants sont consacrés aux fonctions : limite



FONCTION EXPONENTIELLE

Remarque : Dans le cas de limites infinies la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide. Exemple : 



Limites de fonctions

limite de somme produit

1

LIMITES DES FONCTIONS - Chapitre 2/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1 : Limite d'une fonction composée

Méthode : Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3Ii76k

Soit la fonction í µ définie sur !

;+∞! par : í µ 2- 1 Calculer la limite de la fonction í µ en +∞.

Correction

On a : lim

1 =0, donc lim 2- 1 =2 Donc, comme limite d'une fonction composée : lim 2- 1 2 En effet, si í µâ†’+∞, on a : í µ=2- 1 →2 et donc : lim 2.

Partie 2 : Limites et comparaisons

1) Théorèmes de comparaison

Théorèmes : Soit í µ et í µ deux fonctions définies sur un intervalle í µ= - Si pour tout í µ de í µ, on a : 9 lim alors lim =+∞ (Fig.1) - Si pour tout í µ de í µ, on a 9 lim alors lim =-∞ (Fig.2) Remarque : On obtient des théorèmes analogues en -∞.

Figure 1

Par abus de langage, on

pourrait dire que la fonction í µ pousse la fonction í µ vers +∞ pour des valeurs de í µ suffisamment grandes.

Figure 2

2

Démonstration dans le cas de la figure 1 :

lim =+∞ donc tout intervalle , í µ réel, contient toutes les valeurs de í µ(í µ) dès que í µ est suffisamment grand, soit : í µ Donc dès que í µ est suffisamment grand, on a : í µ

Et donc lim

2) Théorème d'encadrement

Théorème des gendarmes :

Soit í µ, í µ et â„Ž trois fonctions définies sur un intervalle í µ=

Si pour tout í µ de í µ, on a : >

lim lim alors lim Remarque : On obtient un théorème analogue en -∞.

Par abus de langage, on pourrait dire que les fonctions í µ et â„Ž (les gendarmes) se resserrent

autour de la fonction í µ pour des valeurs de í µ suffisamment grandes pour la faire tendre vers

la même limite. Ce théorème est également appelé le théorème du sandwich. Méthode : Utiliser les théorèmes de comparaison et d'encadrement

Vidéo https://youtu.be/OAtkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

Calculer : 1) lim

í µ+siní µ 2) lim í µcosí µ 2 +1 3

Correction

1) • lim

siní µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

•lim í µ-1=+∞ donc d'après le théorème de comparaison : lim í µ+siní µ=+∞

2) • lim

cosí µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Et donc :

+1 í µcos(í µ) +1 +1 +1 F G 1 lim 1 =0 donc lim 1

Et donc : lim

1 1 =0, comme limite d'un quotient.

On a donc :lim

2 +1 =lim 2 +1 =0 D'après le théorème des gendarmes, on a : lim í µcos(í µ) 2 +1 =0.

Partie 3 : Cas de la fonction exponentielle

1) Limites aux bornes

Propriétés :

lim =+∞ et lim =0

Démonstration au programme :

Vidéo https://youtu.be/DDqgEz1Id2s

- La suite est une suite géométrique de raison í µ>1. 4

Donc, on a : lim

Si on prend un réel í µ quelconque (aussi grand que l'on veut), il existe un rang í µ

à partir

duquel tous les termes de la suite dépassent í µ, soit : í µ La fonction exponentielle étant strictement croissante, on a également, pour tout

Donc, pour tout í µ>í µ

, on a : í µ

Ainsi, tout intervalle

contient toutes les valeurs de í µ , dès que í µ est suffisamment grand.

Soit : lim

-lim =lim =lim , en posant í µ=-í µ

Or, lim

=+∞, donc : lim =0, comme limite d'un quotient.

Soit : lim

=0. Méthode : Déterminer la limite d'une fonction contenant des exponentiels

Vidéo https://youtu.be/f5i_u8XVMfc

Calculer les limites suivantes :

a) lim b) lim 1

Correction

a) lim -3í µ=-∞ • Donc, comme limite d'une fonction composée : lim =0 En effet, si í µâ†’+∞, on a : í µ=-3í µâ†’-∞ et donc : lim =0. • lim • Comme limite d'une somme : lim b) lim 1 =0, donc : lim 1- 1 =1 Donc, comme limite d'une fonction composée : lim

2) Croissance comparée des fonctions exponentielles et puissances

Exemple :

Observons la fonction exponentielle et la fonction puissance í µâŸ¼í µ dans différentes fenêtres graphiques. 5 Dans cette première fenêtre, la fonction puissance semble l'emporter devant la fonction exponentielle. Mais on constate que pour í µ suffisamment grand, la fonction exponentielle dépasse la fonction puissance í µâŸ¼í µ Remarque : Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Propriétés (croissances comparées) :

a) lim =+∞ et pour tout entier í µ, lim b) lim =0 et pour tout entier í µ, lim =0

Démonstration au programme du a :

Vidéo https://youtu.be/_re6fVWD4b0

- On pose í µ

On a : í µ

6 On calcule la dérivée de la dérivée í µ -1.

Et on note í µ

-1

Pour tout í µ strictement positif, í µ

-1>0.

On dresse alors le tableau de variations :

On en déduit que pour tout í µ strictement positif, í µ >0 et donc í µ

Soit encore :

Comme lim

2 =+∞, on en déduit par comparaison de limites que lim - Dans le cas général, on a :

Fí µ

G =N O =N 1 O

Or : lim

=+∞ car on a vu que lim

Donc : lim

=+∞, car í µ est positif.

Et donc lim

Q R =+∞, comme produit de í µ limites infinies.

Soit : lim

Méthode : Calculer une limite par croissance comparée

Vidéo https://youtu.be/GoLYLTZFaz0

Calculer la limite suivante : lim

2

Correction

Le dénominateur comprend une forme indéterminée de type "∞-∞".

Levons l'indétermination :

1+ 1- 1+ 1- 7 Par croissance comparée : lim =+∞ et de même : lim 2

Donc, comme inverse de limites : lim

=lim 2 =0, donc lim 1+ =lim 1- 2 =1. Donc, lim 1+ 1- 2 1 1 =1 et donc lim 2 =1.quotesdbs_dbs47.pdfusesText_47
[PDF] limites de fonctions exercices corrigés

[PDF] limites de fonctions formes indeterminées

[PDF] limites de fonctions rationnelles exercices

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours

[PDF] Limites de la démocratie

[PDF] limites de la discrimination positive

[PDF] Limites de la puissance francaise

[PDF] Limites de plaques rt localisation des volcans er seismes et conclusion

[PDF] Limites de suite quand n tend vers +oo