[PDF] COURS DE CHIMIE-PCSI/MPSI/TSI- elfilalisaid@yahoo.fr Page -2





Previous PDF Next PDF



Classes préparatoires MP Programme de mathématiques Première

Il est recommandé d'illustrer le cours par de nombreuses figures et d'insister sur l'aspect géométrique. CONTENUS. CAPACITÉS & COMMENTAIRES. Nombres complexes.



Cours et receuil dexrcices Cycle Préparatoire aux Etudes d

de Mathématiques. Faculté des Sciences de Tunis. Janvier 2016. Page 2. Table des mati`eres. 1 Les séries numériques. 2. 1. Définitions et premi`eres propriétés ...



Présentation PowerPoint

- CPI : Classes Préparatoires Intégrées. - CP : Classes Préparatoires. - MPSI : Maths Physiques Sciences de l'Ingénieures. - MP : Maths Physique. - PC 



Guide du candidat Session 2022 1 - Concours nationaux

étranger au cours de l'année universitaire 2021-2022. 1-c) Avoir accompli la deuxième année d'un cycle préparatoire tunisien dans un établissement d' 



Institut Préparatoire aux Etudes dIngénieur El Manar (IPEIEM)

cours d'année du passage de la première à la deuxième année du cycle Le baccalauréat scientifique donne accès aux filières MP ou PC



DESCRIPTION DU MODULE Enseignante: Mouna Rekik

15 sept. 2020 Mohamed Said Ouerghi Professeur à l'ENSI Manouba



Curriculum vitae - Sfax

Tunisie. HLDVT. 2012. International High-Level Design Validation and Test Workshop ... -Informatique générale (Cours) Auditoire (1`ere année préparatoire MP). - ...





Guide du candidat Session 2023

étranger au cours de l'année universitaire 2022-2023. 1-c) Avoir accompli la deuxième année d'un cycle préparatoire tunisien dans un établissement d' 



[ MPSI – Thermodynamique ]

Cpm = Cp/n : capacité thermique molaire à pression constante. b – Cas du gaz parfait. U ne dépend que de T ⇒ H = U + nRT aussi. Pour un GPM



Institut Préparatoire aux Etudes dIngénieur El Manar (IPEIEM)

cours théoriques et de travaux dirigés et pratiques deuxième année du cycle préparatoire. ... relève de l'université de Tunis-El Manar et a pour.



Cours et receuil dexrcices Cycle Préparatoire aux Etudes d

Mathématiques. 2`eme année Biologie-Géologie (BG2). Mohamed Mehdi Tekitek. Département de Mathématiques. Faculté des Sciences de Tunis. Janvier 2016 



Maths Physique (MP)

Cours. Intégré Département Préparatoire Maths Physique (MP). Semestre 1 - Maths Physique (Prépa Concours MP). N°. Groupe de Matières.



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices Le vecteur X ? Mp



Guide du candidat Session 2022 1 - Concours nationaux

étranger au cours de l'année universitaire 2021-2022. 1-c) Avoir accompli la deuxième année d'un cycle préparatoire tunisien dans un établissement.



PROGRAMME DETUDES Cycle Préparatoire Intégré MPI &CBA

L'INSAT assure une formation d'ingénieurs comme suit : 1) Un Cycle Préparatoire Intégré qui dure 2 ans au cours du quel un seul redoublement est permis. Les 



Classes préparatoires MP Programme de mathématiques Première

Il est recommandé d'illustrer le cours par de nombreuses figures et d'insister sur l'aspect géométrique. CONTENUS. CAPACITÉS & COMMENTAIRES. Nombres complexes.



1ère Année Cycle Préparatoire MPI (2019/2020) MP1

La Vice Doyenne/Directrice des Etudes. Pr. Fadila DARRAGI. Page 2. ???????? ?????. Direction des Etudes. 1ère Année Cycle Préparatoire MPI (2019/2020).



Cours danalyse 1 Licence 1er semestre

Le but de ce chapitre est de présenter les quantificateurs ? et ? qui appara?tront dans ce cours. (limite d'une suite continuité d'une fonction) et de 



COURS DE CHIMIE-PCSI/MPSI/TSI- elfilalisaid@yahoo.fr Page -2

COURS DE CHIMIE-PCSI/MPSI/TSI-. 1.2 INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME. D'HYDROGÈNE (MODÈLE DE BOHR). 1.2.1 Données expérimentales :.

COURS DE CHIMIE-PCSI/MPSI/TSI-

elfilalisaid@yahoo.fr Page -2- -SAID EL FILAI-

Deuxième partie

STRUCTURE DE LA MATIÈRE

3

TABLE DES MATIÈRES

II STRUCTURE DE LA MATIÈRE3

1 STRUCTURE DE LA MATIÈRE7

1.1 Rappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.2 INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

1.2.1 Données expérimentales : . . . . . . . . . . . . . . . . . . . . . . . .. .9

1.2.2 Interpretation de BOHR . . . . . . . . . . . . . . . . . . . . . . . . . ..10

1.2.2.1 Modèle de BOHR . . . . . . . . . . . . . . . . . . . . . . . . .10

1.2.2.2 Interpretation du spectre atomique d'Hydrogène . .. . . . . . .12

1.2.2.3 Diagramme énergétique de l'hydrogène : . . . . . . . . . .. .12

1.2.2.4 Théorie de BOHR appliquée aux hydrogènoides . . . . . .. . .13

1.3 L'ATOME A UN ÉLECTRON (HYDROGÉNOIDE) . . . . . . . . . . . . . . . .14

1.3.1 Dualité Onde-corpuscule . . . . . . . . . . . . . . . . . . . . . . . .. . .14

1.3.2 Principe d'incertitude de Heisenberg . . . . . . . . . . . . .. . . . . . . .14

1.3.3 Équation de Schrodinger . . . . . . . . . . . . . . . . . . . . . . . . .. .14

1.3.4 La densité de probabilité . . . . . . . . . . . . . . . . . . . . . . . .. . .14

1.3.5 L'électron en mécanique quantique . . . . . . . . . . . . . . . .. . . . .15

1.3.6 Les nombres quantiques . . . . . . . . . . . . . . . . . . . . . . . . . ..15

1.3.6.1 Le nombre quantique principaln. . . . . . . . . . . . . . . . .16

1.3.6.2 Le nombre quantique secondaire ou azimutal?. . . . . . . . .16

1.3.6.3 Le nombre quantique magnétiquem: . . . . . . . . . . . . . .16

1.3.7 Les orbitales atomiques (O.A) . . . . . . . . . . . . . . . . . . . .. . . .17

1.4 ATOMES POLYÉLECTRONIQUES . . . . . . . . . . . . . . . . . . . . . . . . .17

1.4.1 Le spin et la règle d'exclusion de Pauli. . . . . . . . . . . . . . . . . . .17

1.4.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.4.1.2 Règle (principe) d'exclusion de PAULI . . . . . . . . . . .. .18

1.4.1.3 Les niveaux d'énergie et la règle de KLECHKOVSKY . . .. .19

1.4.1.4 Règle de HUND . . . . . . . . . . . . . . . . . . . . . . . . .20

1.4.1.5 Structure électronique des atomes . . . . . . . . . . . . . .. .21

1.5 La classification périodique des éléments . . . . . . . . . . . .. . . . . . . . . . .22

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

1.5.2 Presentation actuelle du tableau périodique . . . . . . .. . . . . . . . . .22

1.6 Périodicité et propriétés générales des éléments de la classification périodique . . .24

1.6.1 Comportement chimique et position dans la C-P . . . . . . .. . . . . . .24

5 TABLE DES MATIÈRESCOURS DE CHIMIE-PCSI/MPSI/TSI-

1.6.2 Potentiel d'ionisation (énergie d'ionisation) . . . .. . . . . . . . . . . . .25

1.6.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

1.6.2.2 Evolution de l'énergie d'ionisation dans le T.P : . .. . . . . . .25

1.6.2.3 L'affinité électronique . . . . . . . . . . . . . . . . . . . . . . .26

1.6.2.4 L'électronégativité . . . . . . . . . . . . . . . . . . . . . . . . .26

1.6.2.4.1 Mulliken . . . . . . . . . . . . . . . . . . . . . . . . .27

1.6.2.4.2 Pauling . . . . . . . . . . . . . . . . . . . . . . . . .27

1.6.2.5 Les grandeurs géométriques . . . . . . . . . . . . . . . . . . .28

1.6.2.5.1 Rayon covalent . . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.2 Rayon métallique . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.3 Rayon ionique . . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.4 Rayon de Van der Waals . . . . . . . . . . . . . . . .28

1.6.2.5.5 L'évolution dans le T-P . . . . . . . . . . . . . . . . .29

1.6.2.6 Nombre d'oxydation . . . . . . . . . . . . . . . . . . . . . . .29

1.6.2.7 La polarisation . . . . . . . . . . . . . . . . . . . . . . . . . .29

1.7 THÉORIE DE LEWIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

1.7.1 Representation de LEWIS . . . . . . . . . . . . . . . . . . . . . . . . ..30

1.7.2 Liaison covalente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

1.7.3 Règle de l'octet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

1.8 Théorie de Gillespie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .33

1.9 Polarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..36

1.9.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

1.9.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

1.9.3 Forces d'interaction . . . . . . . . . . . . . . . . . . . . . . . . . . .. .37

1.9.3.1 Interactions de Van Dear Waals . . . . . . . . . . . . . . . . . .37

1.9.3.2 Liaison hydrogène . . . . . . . . . . . . . . . . . . . . . . . . .37

1.9.3.3 Conséquences . . . . . . . . . . . . . . . . . . . . . . . . . . .37

1.9.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

elfilalisaid@yahoo.fr Page -6- -SAID EL FILAI-

CHAPITRE1

STRUCTURE DE LA MATIÈRE

1.1 Rappel

?On rappelle que l'atome est constitué d'un noyau et des électrons.

?On appelle élément chimique l'entité qui se conserve lors des réactions chimiques; autrement

dit une entité caractérisée par son numéro atomique notéZ.

Exemple : H

+;H-;1H;2H;3H ?Le numéro atomiqueZreprésente le nombre de protons etNle nombre de neutrons. ?On appelle nombre de masseAla somme des nucleons (A=Z+N).

?On appelle isotopes d'un élément chimique des atomes ayant le mêmeZet différent parN( ou

A). ?Quelques ordre de grandeur : ?La masse d'un électron : me=9,10938356×10-31kg ?Le rayon d'un électron : re=2,8179403227×10-15m ?La masse d'un proton : mp=1,672621898×10-27kg ?Le rayon d'un proton : rp=8,751×10-16m ?Le rayon de Bohr de l'atome d'Hydrogène : ao=0,52917721067×10-12m ?La masse d'un atome est concentrée dans le noyau puisquempme?1836 ( c'est à dire la masse des électrons est très négligeable devant celle des nucleons). 7

1.1. RAPPELCOURS DE CHIMIE-PCSI/MPSI/TSI-

?On appelle mole de particules un en ensemble deNAparticules;NAconstante d'AVOGADRO sa valeur :

NA=6,022140857×1023mol-1

?On appelle masse molaire, la masse d'une mole notéeMexprimée en kgmol-1ou gmol-1.? On appelle abondance isotopique le pourcentage massique d'un isotope.

Application: Autour du carbone

1?Le carbone, à l'état naturel, est constitué principalementpar les isotopes12

6C et13

6C.

1.1?Que signifient l'indice 6 et l'exposant 13 relatifs à l'isotope13

6C?

1.2?Combien de neutrons le noyau de l'isotope13

6C contient-il?

2?En ne considérant que les deux isotopes12

6C et13

6C , déduire de la masse molaire

atomique du carbone à l'état naturel (12,01115 gmol -1) sa fraction molaire en isotope13 6C.

On donne :

?Masse molaire atomique de l'isotope12

6C : 12,000000 gmol-1.

?Masse molaire atomique de l'isotope13

6C : 13,000000 gmol-1.

Correction

M(C)=xM(12C)+yM(13C) ainsix+y=1 (une mole)A.NGGGGGGGGGGA x=0,98 ety=0,02

N.B :x=m(12C)

M(12C)ety=m(13C)M(13C)

Autour du cuivre

Le numéro atomique du cuivre est Z=29.

L'élément cuivre possède deux isotopes naturels :

63Cu et65Cu.

1?Quels sont les nombres de protons et de neutrons dans le noyaude63Cu? Même

question pour 65Cu?

2?On donne les abondances isotopiques naturelles des atomes de63Cu et65Cu :

69,2% pour le

63Cu et 30,8% pour le65Cu.

Calculer la masse molaireMCude l'élément cuivre.

Correction

M(Cu)=63,616 gmol-1

Autour du soufre

Le soufre naturel est constitué de quatre isotopes stables dont deux présents en majorité : x% de l'isotope32Sy% de l'isotope34S. La masse molaire de l'isotope 34 est de 33,968 gmol -1et celle de l'isotope 32 est de 31,972 gmol-1. Calculer les pourcentages isotopiquesxetysachant que la masse molaire atomique du soufre est de 32,066 gmol -1et en supposant que les autres isotopes sont en quantité négli- geable.

Correction

x=0,96;y=0,04 elfilalisaid@yahoo.fr Page -8- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

1.2 INTERPRÉTATIONDUSPECTRED'ÉMISSIONDEL'ATOME

D'HYDROGÈNE (MODÈLE DE BOHR)

1.2.1 Données expérimentales :

À l'état normal la matière n'émet aucun rayonnement ,mais lorsque elle est excitée elle émet une

radiation lumineuse qui correspond à un changement d'état de l'électron .

On peut mettre en évidence les caractéristiques de cette lumière émise en la faisant passer à travers

un dispositif dispersif (prisme , réseau ,...). PrismeRouge (656,3 nm)Bleu (486 nm)Indigo (434 nm)Violet (410 nm)

D'où le spectre :

λ(nm)

410 434 486 656.3

C'est un spectre discontinu constitué de quatres raies dansle visible :c'est la série de BALMER

qui a montré expérimentalement en 1885 que

σ=1λ=RH(122-1m2)

avecm?N>2 ?σ:nombre d'onde. ?λ: La longueur d'onde. ?RHla constante de RYDBERG pour l'atome d'hydrogène il a trouvéexpérimentalement que :

RH=109677,5 cm-1

En 1908 RITZ a généralisé la formule de BALMER .

σ=1λ=RH(1n2-1m2)

avecm>n elfilalisaid@yahoo.fr Page -9- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

?n=1=?série de LYMAN (UV) ?n=2=?série de BALMER (Visible) ?n=3=?série de PASCHEN (IR) ?n=4=?série de BRACKET (IR)

1.2.2 Interpretation de BOHR

1.2.2.1 Modèle de BOHR

C'est un modèle planétaire où l'électron décrit un mouve- ment circulaire . Dans le repère de FRENET , la relation fondamentale de la dynamique s'écrit :

F=m-→a=?e2

Par conséquent :

?La projection suivant-→Tdonne : dV dt=0=?V=cte OM(e) T N -→Fe

C'est à dire que l'électron décrit un

mouvement circulaire uniforme ?La projection suivant-→Ndonne : mV2=e24πεor ?L'énergie cinétique de l'électron :

Ec=12mV2=?Ec=e28πεor

?L'énergie potentielle de l'électron ( Voir cours de mécanique) :

Ep=-e24πεor

?L'énergie mécanique de l'électron :

Em=Ec+Ep=?Em=-e28πεor

L"énergie mécanique de l"électron est une fonction continue deretrvarie de

façon continue;donc ce résultat ne permet pas d'expliquer le spectre discontinu de l'atome d'hy-

drogène. elfilalisaid@yahoo.fr Page -10- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

BOHR a formulé certaines hypothèses :

•L'électron sur la même trajectoire : état stationnaire .

•En→Em>En: absorption d'énergie

•En→Ep

D'après la théorie des quanta de PLANCK :

Em-En=hν=hcλ

Et commeν(λ) ne peut prendre que certaines valeurs discrètes; alorsL'énergie est quantifiée

BOHR a quantifié la norme du moment cinétique :

σ=mrV=n?=nh2π

Ce qui donne :

V=nh2πrm=nh2πrμ

Avecμ=masse réduite en tenant compte du mouvement de l'électron autour du proton supposé l'atome isolé dans le référentiel barycentrique ( Voir cours de mécanique).

μV2=nh

rn=εoh2πμe2n2=?rn=aon2

Quantification du rayonrde la trajectoire

Remarque

ao=rn(n=1) est appelé le rayon de BOHR sa valeur vautao=0,529 Å

Ainsi :

En=-μe48ε2oh21n2=?En=-Eon2

Quantification de l'énergie totaleE

Eo=E(n=1)=μe48ε2oh2?13,6 eV

On retient donc :

rn=an2?En=-Eon2 elfilalisaid@yahoo.fr Page -11- -SAID EL FILAI-quotesdbs_dbs50.pdfusesText_50

[PDF] cours prescolaire pdf

[PDF] cours prévention santé environnement

[PDF] cours principe de gestion 1ére année iag

[PDF] cours principe de gestion 1ére année ihec

[PDF] cours principe de gestion 1ere année lag

[PDF] cours principe de gestion 1ere année lfg

[PDF] cours principes fondamentaux de l'économie et de la gestion

[PDF] cours probabilité 1ere es

[PDF] cours probabilité 1ere s pdf

[PDF] cours probabilité bts

[PDF] cours probabilité economie gestion s2

[PDF] cours probabilité premiere bac pro

[PDF] cours probabilité premiere es

[PDF] cours probabilité seconde

[PDF] cours probabilité terminale es pdf