[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMETIQUES. ET SUITES GEOMETRIQUES. I. Suites arithmétiques. 1) Définition.



FONCTION DERIVÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION DERIVÉE. I. Dérivées des fonctions usuelles. Exemple :.



CALCUL LITTÉRAL

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. CALCUL LITTÉRAL. Tout le cours sur les développements en vidéo : https://youtu.be/gSa851JJn6c.



Partie 1 : Fonction dérivée

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. DÉRIVATION – Chapitre 2/2. Partie 1 : Fonction dérivée. Définition : La fonction qui à tout 



PRODUIT SCALAIRE (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PRODUIT SCALAIRE (Partie 1). Tout le cours en vidéo : https://youtu.be/dII7myZuLvo.



LES VECTEURS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES VECTEURS. I. Translation. Exemple : B. 80m. Une translation est un glissement :.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTIQUES. ET SUITES GÉOMÉTRIQUES. Tout le cours en vidéo : https://youtu.be/ 



LIMITES DES FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DES FONCTIONS. Partie 1 : Limite d'une fonction à l'infini.



FACTORISATIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FACTORISATIONS. I. La distributivité. Factorisation : Lecture « droite ? gauche » de la 



FONCTIONS POLYNÔMES DE DEGRÉ 2

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS POLYNÔMES DE DEGRÉ 2. Chapitre 1/2. Partie 1 : Définition.

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés.quotesdbs_dbs47.pdfusesText_47
[PDF] math et tiques corrigé

[PDF] math ex 2 important

[PDF] Math ex 92 p 165

[PDF] MATH EX A FINIR AU PLUS VITE SVPPP

[PDF] math exercice

[PDF] math exercice 1

[PDF] math exercice 2 devoir 12

[PDF] Math exercice 2nd u_u

[PDF] Math exercice 36 aide svp

[PDF] Math exercice 3eme

[PDF] math exercice 6 devoir 3

[PDF] math exercice de factorisation

[PDF] math exercice de factorisation explique moi ; ; ;; ; ; ; ; ; ;;; ; ;;;;;;;;;;;;;;;;;;;;;;

[PDF] Math exercice échantillonnage

[PDF] Math exercice échantillonnage SVP !!!! ;)