[PDF] Limites et asymptotes Limites et asymptotes. I. Limites





Previous PDF Next PDF



Déterminer les limites de f aux bornes de son ensemble de

On commence par déterminer le domaine de définition de la fonction f. L'une des limites requiert d'utiliser un résultat relatif aux croissances comparées.



FONCTION LOGARITHME NEPERIEN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME a) Calculer les limites de f aux bornes de son ensemble de définition.



FONCTION INVERSE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION INVERSE. I. Définition et allure de la courbe. Vidéo https://youtu.be/Vl2rlbFF22Y.



Chapitre 2 Continuité des fonctions réelles

Définition 2.1.1. La partie D est appelée ensemble (ou domaine) de définition de la fonction ... bornes de J sont les limites de f aux bornes de I. (2).



Limites et continuité

Maths en Ligne. Limites et continuité. UJF Grenoble. Définition 2. Soit f une fonction de R dans R et x ? Df . Soit P une des propriétés.



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

Déterminer les limites de f aux bornes de son domaine de définition. 3. Calculer la fonction dérivée de f et étudier son signe.



Apprentissage de la notion de limite : Modèles spontanés et

interfering with the mathematical definition. In this paper we study the spontaneous models and the elaborating of the individual models for the notion of.



Limites et asymptotes

Limites et asymptotes. I. Limites en l'infini. 1) Limite infinie à l'infini. Définition 1 : Soit f une fonction définie au moins sur un intervalle du type 



1 Relation affine cachée

Les savoirs à revoir pour ce TD : la définition d'un ensemble convexe dans déterminer les limites aux bornes de l'ensemble de définition puis



I Fonctions et domaines de définition II Limites

Définition d'une fonction domaines de définition

Année 2005-20061èreS

Chap V :Limites et asymptotes

I. Limites en l"infini

1) Limite infinie à l"infini

Définition 1 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: On dit quefa pour limite+∞en+∞et on notelimx→+∞f(x) = +∞sif(x)est aussi grand que l"on veut dès quexest assez grand ( Lorsqu"on dit grand, on sous-entend positif ). faire le lien avec tableau de variations

Exemple :limx→+∞x= +∞;limx→+∞x2= +∞;limx→+∞x3= +∞;limx→+∞⎷x= +∞

On définit de mêmelimx→+∞f(x) =-∞parf(x)est aussi grand dans les négatifs que l"on veut dès

quexest assez grand.

On définit encore de manière analoguelimx→-∞f(x) = +∞,limx→-∞f(x) =-∞

(attention toutefois à l"ensemble de définition). Exemple :limx→-∞x=-∞;limx→-∞x2= +∞;limx→-∞x3=-∞

2) Limite finie à l"infini

Définition 2 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: On dit quefa pour limite0en+∞et on notelimx→+∞f(x) = 0sif(x)est aussi petit que l"on veut dès quexest assez grand ( Lorsqu"on dit petit, on sous-entend proche de zéro ). On définira de même :limx→-∞f(x) = 0.

Exemple :limx→+∞1

x= 0;limx→+∞1x2= 0;limx→+∞1x3= 0;limx→+∞1⎷x= 0

Exemple :limx→-∞1

x= 0;limx→-∞1x2= 0;limx→-∞1x3= 0

Page 1/5

Année 2005-20061èreS

On peut à présent définir une limite quelconque en l"infini : Définition 3 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: Avoirlimx→+∞f(x) =lest équivalent à avoirlimx→+∞[f(x)-l] = 0 Remarque :limx→+∞f(x) =l?f(x) =l+ε(x)aveclimx→+∞ε(x) = 0. -→démonstration Remarque :Une fonction n"a pas nécessairement de limite (finie ou infinie) lorsquextend vers fdéfinie surRparf(x) = cos(x)n"a de limite ni en-∞ni en+∞.

II. Limite en un pointa

1) Limite en0

Définition 4 :Soitfune fonction définie au moins sur un intervalle ouvert en0: Sif(x)est aussi grand (positif) que l"on veut dès quexest assez proche de0, on dit quefa pour limite+∞en0et on notelimx→0f(x) = +∞. (On définit de mêmelimx→0f(x) =-∞.)

Exemple :limx→01

x2= +∞limx→01⎷x= +∞. Remarque :Une fonction peut avoir une limite différente à gauche et à droite de0, on notera alors : lim x→0 x >01 x= +∞etlim x→0 x <01x=-∞ou encorelim x→0 x >01x3= +∞etlim x→0 x <01x3=-∞

On note également parfois :lim

x→0+1 x3= +∞. Définition 5 :Soitfune fonction définie au moins sur un intervalle ouvert en0: Sif(x)est aussi petit que l"on veut (proche de0) dès quexest assez proche de0, on dit quefa pour limite0en0et on notelimx→0f(x) = 0. Exemple :limx→0x= 0;limx→0x2= 0;limx→0x3= 0;limx→0⎷ x= 0 Définition 6 :Soitfune fonction définie au moins sur un intervalle ouvert en0: On dit quefa pour limitelen0lorsque la fonctionx?→f(x)-la pour limite0 en0. Remarque :On peut traduire mathématiquement cette définition par lim x→0f(x) =l?limx→0?f(x)-l?= 0

Page 2/5

Année 2005-20061èreS

2) Limites ena?R

Définition 7 :Soitfune fonction définie sur un intervalle ouvert ena, on dit quefa une limite enasi la fonctionh?→f(a+h)a une limite en0et alors : lim x→af(x) = limh→0f(a+h)

Exemple :On alimx→1?

1 +1 (x-1)2? = lim h→0?

1 +1h2?

Remarque :limx→af(x) =l?f(x) =l+ε(x)aveclimx→aε(x) = 0. Remarque :Sia?Dfet silimx→af(x)existe, alorslimx→af(x) =f(a).

Exemple :Sia >0,limx→a⎷

x=⎷a.

SiPest un polynôme,limx→aP(x) =P(a).

SiRest une fraction rationnelledéfinie ena,limx→aR(x) =R(a).

III. Opérations sur les limites

Dans toute cettte partie les limites des fonctionsfetgsont??aux mêmes points??à savoir+∞, -∞oua?R.

1) Somme

On a le tableau récapitulatif suivant :

limf(x) =lll+∞-∞+∞ limg(x) =l?+∞-∞+∞-∞-∞ lim?f(x) +g(x)?=l+l?+∞-∞+∞-∞F.I

2) Produit

On a le tableau récapitulatif suivant :

limf(x) =ll >0l <0l >0l <0+∞-∞+∞0 limg(x) =l?+∞-∞+∞-∞-∞+∞ou-∞

Page 3/5

Année 2005-20061èreS

3) Quotient

On a le tableau récapitulatif suivant :

limf(x) =+∞-∞±∞l <0ou-∞l >0ou+∞0 limg(x) =l?>0l?<0l?>0l?<0±∞0+0-0+0-0 lim?f(x)g(x)? Remarque :•0+(resp.0+) indique que la limite est nulle et que la fonction reste positive (resp. négative). •Il y a quatre formes indéterminées :+∞ - ∞;0× ∞;∞ ∞;00 Remarque :Avec ces régles de calcul et quelques transformations on peut trouver n"importe quelle limite. Exemple :On cherchelimx→+∞?x3-3x2+ 4x+ 1?.quotesdbs_dbs3.pdfusesText_6
[PDF] Math: milieu et parallèle

[PDF] Math: Problème

[PDF] Math: Prolème

[PDF] Math: Racine d'un trinome

[PDF] MATH:DM FACILE DUR POUR MOI

[PDF] math; géometrie

[PDF] mathe

[PDF] Mathe 1

[PDF] mathe aider moi

[PDF] mathe Développer l'expression

[PDF] Mathé mati ques

[PDF] Matheatiques niveaux 3eme Dm

[PDF] Mathémarique : exercice

[PDF] mathemarique cube 2nd cacul dans l'espace

[PDF] Mathémariques, particularité : Le théorème de Pythagore A répondre le plus rapidement possible s'il vous plaît