[PDF] [PDF] Suites et séries de fonctions - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Suites de fonctions

Y a-t-il convergence uniforme de la suite de fonction ( ) ?? ? 3. Etudier la convergence uniforme sur [ 1] avec > 0. Allez à : Correction exercice 7.



Suites et séries de fonctions

I : Incontournable. Exercice 1. Etudier les suites de fonctions suivantes (convergence simple convergence uniforme



Suites et séries de fonctions : exercices corrigés.

Mais il y a convergence uniforme sur toute demi-droite ]?? A]. Exercice 2 : Etudier la convergence sur [0



suites-et-séries-de-fonctions.pdf

(c) Étudier la convergence uniforme sur [0 ; +?[. Exercice 10 [ 00873 ] [Correction]. On pose fn(x) = nx2e?nx 



Exercices sur les suites de fonctions

Montrer que la suite de fonctions (un) converge simplement vers une fonction à préciser. Montrer que la convergence est uniforme sur tout intervalle compact de 



Séries de fonctions

Etudier la convergence uniforme de cette série sur [. [ où . Allez à : Correction exercice 2. Exercice 3. Etudier la convergence simple et la convergence 



Daniel Alibert - Cours et exercices corrigés - volume 11

Connaître les notions de convergence ponctuelle convergence uniforme



Pascal Lainé Intégrales généralisées. Suites et séries numériques

Exercices corrigés. Licence STS Allez à : Correction exercice 1 ... Etudier la convergence uniforme de la suite de fonctions définies sur par :.



Suites et séries de fonctions Exercice 1 Exercice 2 Exercice 3

Donc (Fn)n?N converge simplement vers 0 sur [0A]. Pour étudier la convergence uniforme



Exercices - Suites et séries de fonctions : corrigé Convergence de

ce qui garantit la convergence uniforme sur [?a a]. 2. Il est clair que fn converge simplement vers la fonction nulle sur [0



[PDF] Suites de fonctions - Licence de mathématiques Lyon 1

Allez à : Correction exercice 1 Exercice 2 Autre outil pour la convergence uniforme Etudier la convergence uniforme de la suite de fonctions définies sur 



Exercices corrigés -Suites de fonctions - convergence uniforme

Reprendre l'exercice en remplaçant la convergence simple par la convergence uniforme Indication Corrigé VRAI/VRAI (les inégalités larges se conservent par 



[PDF] Suites et séries de fonctions - Xiffr

Étudier la convergence uniforme de la suite de fonctions (un)n?1 sur [0 ; 1] Exercice 8 [ 00872 ] [Correction] Étudier la convergence uniforme de fn : [0 



[PDF] Exercices sur les suites de fonctions

Exercices sur les suites de fonctions 1 Enoncés Exercice 1 Étudier la convergence simple et uniforme des suites de fonctions de R dans R suivantes :



[PDF] Suites et séries de fonctions Exercice 1 Exercice 2 Exercice 3

Pour étudier la convergence uniforme on remarque que Fn(x) est une fonction crois- sante de x Donc sur l'intervalle [0A] Fn ? 0? = Fn(A) Or Fn(A) 



[PDF] Suites et séries de fonctions : exercices corrigés

Mais il y a convergence uniforme sur toute demi-droite ]?? A] Exercice 2 : Etudier la convergence sur [0 1] des suites de fonctions : fn(x) =



[PDF] Suites de fonctions Chapitre 12 I Convergence simple et uniforme

10 août 2022 · Exercice I 2 Soit f une fonction de X dans E Les propositions suivantes sont équivalentes 1 ?? > 0 ?N 



[PDF] Suites et séries de fonctions - Exo7 - Exercices de mathématiques

Montrer que f est de classe C1 sur ]1+?[ et dresser son tableau de variation Correction ? [005731] Exercice 7 ** Etudier (convergence simple convergence 



Exercice 38 [Suites de fonctions]

Partie Question Étudier la convergence simple et la convergence uniforme de la suite de fonctions suivante :



[PDF] TD 4 : Convergence uniforme - Corrigé succinct

Enfin 1 = ln(e) par la définition de e et puis ex = exp(xln(e)) = exp(x) Exercice 2 (Exemples de suites de fonctions) Pour chaque choix ci-dessous de 

  • Comment montrer qu'une suite converge uniformément ?

    Convergence simple et convergence uniforme
    Soit ( ? f n ) une série de fonctions qui converge simplement. Alors elle converge uniformément si et seulement si la suite des restes partiels ( ) converge uniformément vers la fonction nulle. Cela est évident car R n = S ? S n .
  • Comment calculer la convergence uniforme ?

    S'il existe une fonction f telle que : un = f (n) et si f admet une limite finie ou infinie en alors : On va donc gérer la recherche de la limite de (un) comme on gérerait la recherche de la limite de f en , mais en utilisant n comme variable. Donc (un) converge vers 0.
  • Comment calculer la convergence d'une fonction ?

    Série géométrique. La somme partielle est définie par S n ( x ) = 1 ? x n + 1 1 ? x pour tout x ? 1 et S n ( 1 ) = n + 1 . La série numérique ( ? x n ) converge si et seulement si , donc pour x ? ] ? 1 , 1 [ . La fonction reste d'ordre n est ici explicitable : R n ( x ) = x n + 1 1 ? x .
Exo7

Suites et séries de fonctions

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1Etudier les suites de fonctions suivantes (convergence simple, convergence uniforme, convergence localement

uniforme)

1) (**)fn(x) =nx1+n2x22) (**)fn(x) =exånk=0xkk!3) (**)fn(x) =n(1x)nsinpx2

1xn nsix2[0;n]

0 six>n.

1. Montrer que la suite (fn)n2Nconverge uniformément surR+vers la fonctionf:x7!ex. 2. A l"aide de la suite (fn)n2N, calculer l"intégrale de GAUSSR+¥

0ex2dx.

polynôme de BERNSTEINassocié àfpar B n(f) =ånk=0n k fkn

Xk(1X)nk.

1. (a) Calculer Bn(f)quandfest la fonctionx7!1, quandfest la fonctionx7!x, quandfest la fonction x7!x(x1). (b)

En déduire que

ånk=0n

k (knX)2Xk(1X)nk=nX(1X). 2.

En séparant les entiers ktels quexkn

>aet les entiersktels quexkn

6a(a>0 donné), montrer

que la suite de polynômes(Bn(f))n2Nconverge uniformément versfsur[0;1]. 3. Montrer le théorème de W EIERSTRASS: soitfune application continue sur[a;b]à valeurs dansR. Montrer quefest limite uniforme sur[a;b]d"une suite de polynômes. un polynôme. 1

Exercice 5**Soitf(x) =å+¥n=1xnsin(nx)n

1.

Montrer que fest de classeC1sur]1;1[.

2. Calculer f0(x)et en déduire quef(x) =arctanxsinx1xcosx. 1. Domaine de définition de f. On étudie ensuitefsur]1;+¥[. 2.

Continuité de fet limites defen 1 et+¥.

3. Montrer que fest de classeC1sur]1;+¥[et dresser son tableau de variation. fonctions de termes généraux :

1.fn(x) =nx2expn

surR+

2.fn(x) =1n+n3x2surR+

3.fn(x) = (1)nx(1+x2)n.

011+xadx=å+¥n=0(1)n1+na.

1+t2n(1+t2)

1.

Etudier la con vergencesimple et uniforme de la série de terme général fnpuis la continuité de la somme

f. 2.

Montrer que lim

t!+¥f(t) =ln2p

à l"aide de la formule de STIRLING.

2.

Etude complète def=å+¥n=1fn: domaine de définition, parité, limites, continuité, dérivabilité (vérifier quef

n"est pas dérivable en 0), allure du graphe. 2 Exercice 11**Pourx>0, on posef(x) =å+¥n=0expn . Trouver un équivalent simple defen 0 à droite. Correction del"exer cice1 N1.Pour tout entier naturel n,fnest définie surRet impaire.

Convergence simple surR.Soitx2R.

• Six=0, pour tout entier natureln,fn(x) =0 et donc limn!+¥fn(x) =0. • Six6=0,fn(x)n!+¥1nx et de nouveau limn!+¥fn(x) =0.

La suite de fonctions(fn)n2Nconverge simplement surRvers la fonction nulle.Convergence uniforme surR.On peut noter tout de suite que pour toutn2N,fn1n

=12 et donc kfnk¥>12 . On en déduit quekfnk¥ne tend pas vers 0 quandntend vers+¥.

La suite de fonctions(fn)n2Nne converge pas uniformément surRvers la fonction nulle.Si on n"a pas remarqué ce qui précède, on étudie la fonctionfnsurR+(fnétant impaire) dans le but de

déterminer sup x2Rjfn(x)0j.

Soitn2N. La fonctionfnest dérivable surR+et pour tout réel positifx,f0n(x) =n(1+n2x2)x(n2x)(1+n2x)2=

n(1n2x2)(1+n2x)2. Par suite, la fonctionfnest croissante sur0;1n et décroissante sur1n

Puisque la fonctionfnest positive surR+, sup

x2Rjfn(x)0j=fn1n =12 qui ne tend pas vers 0 quandn tend vers l"infini. Convergence uniforme et localement uniforme sur]0;+¥[.La suite de fonctions(fn)n2Nne converge toujours pas uniformément vers la fonction nulle sur]0;+¥[car pourn>1, sup x2Rjfn(x)0j=12 Soitaun réel strictement positif fixé. Soitn>1a . On a 0<1n Donc sup x2[a;+¥[jfn(x)0j=fn(a)pourn>1a . On en déduit que limn!+¥sup x2[a;+¥[jfn(x)0j=0. Donc la

suite de fonctions(fn)n2Nconverge uniformément vers la fonction nulle sur tout intervalle de la forme

[a;+¥[oùa>0 et en particulier converge localement uniformément vers la fonction nulle sur]0;+¥[

mais ne converge pas uniformément vers la fonction nulle sur]0;+¥[.

2.Convergence simple surR.Soitx2R. On sait queex=limn!+¥ånk=0xkk!et donc la suite(fn)n2N

converge simplement surRvers la fonction constantef:x7!1. Convergence uniforme surRetR+.limx!¥jfn(x)f(x)j= +¥. Par suite, pour tout entier naturel n, la fonctionjfnfjn"est pas bornée surR. La suite de fonctions(fn)n2Nne converge donc pas uniformément versfsurR. lim x!+¥jfn(x)f(x)j=1 et donc sup x2[0;+¥[jfn(x)f(x)j>1. La suite de fonctions(fn)n2Nne converge donc pas uniformément versfsurR+. Convergence localement uniforme surR.Soit[a;b]un segment deR. Pourn2N, posonsgn=fnf. La fonctiongnest dérivable surRet pourx2R g

0n(x) =ex

ånk=0xkk!+ån1k=0xkk!

=exxnn!. 4 Sinest pair, la fonctiongnest décroissante surRet s"annule en 0. Sinest impair, la fonctiongnest croissante surR, décroissante surR+et s"annule en 0.

Dans les deux cas, six2[a;b],jgn(x)j6Maxfjgn(a)j;jgn(b)jgavec égalité effectivement obtenue pour

x=aoux=b. Donc sup

Cette dernière expression tend vers 0 quandntend vers+¥. On en déduit que la suite de fonctions

(fn)n2Nconverge uniformément versfsur tout segment[a;b]contenu dansRou encore

la suite de fonctions(fn)n2Nconverge localement uniformément vers la fonctionf:x7!1 surR.3.Pour xréel etnentier naturel, on posefn(x) =n(1x)nsinp2

x.

Convergence simple.Soitxréel fixé. sinp2

x=0,x22Z. Dans ce cas, limn!+¥fn(x) =0. Six=22Z, la suite(fn(x))n2Nconverge,la suite(n(1x)n)n2Nconverge, j1xj<1,0Dans ce cas, lim n!+¥fn(x) =0.

La suite de fonctions(fn)n2Nconverge simplement vers la fonction nulle sur[0;2][2Z.Convergence uniforme sur[0;2].Soitnun entier naturel non nul fixé.

sup x2[0;2]jfn(x)0j>fn1n =n11n nsinp2n. Cette dernière expression est équivalente à p2een+¥et en particulier ne tend pas vers 0 quandntend vers+¥.

La suite de fonctions(fn)n2Nne converge pas uniformément vers la fonction nulle sur[0;2].1 2 3 4 5

12345678

y=R x2 x1 lnt dt5

La suite de fonctions(fn)n2Nne converge pas uniformément vers la fonction nulle sur[0;2].Correction del"exer cice2 NConvergence simple surR+.Soitxun réel positif fixé. Pourn>x,fn(x) =1xn

net donc f n(x) =n!+¥1xn n=n!+¥expnln1xn =n!+¥exp(x+o(1). Donc la suite de fonctions(fn)n2Nconverge simplement surR+vers la fonctionf:x7!ex.

Convergence uniforme surR+.Pourxréel positif etnentier naturel non nul, posonsgn(x) =f(x)fn(x) =ex1xn

nsix2[0;n] e xsix>n. Déterminons la borne supérieure de la fonctionjgnjsur[0;+¥[. La fonctiongnest définie et continue surR+. Pourx>n, 01). La fonctiongnest continue sur le segment[0;n]et admet donc sur[0;n]un minimum et un maximum.

• La fonctiongna un minimum égal à 0 atteint en 0. En effet, on sait que pour tout réelu,eu>1+u(inégalité

de convexité) et donc pour tout réelxde[0;n],ex=n>1xn >0. Après élévation des deux membres de cette inégalité, par croissance det7!tnsurR+, on obtientex>1xn nou encoregn(x)>0=gn(0).

• Pour 0

De plus,g0n(n) =en<0 et puisque la fonctiongnest de classeC1sur[0;n], sa dérivéeg0nest strictement

négative sur un voisinage à gauche den. La fonctiongnest alors strictement décroissante sur ce voisinage et

la fonctiongnadmet nécessairement son maximum surR+en un certain pointxnde]0;n[. En un tel point,

puisque l"intervalle]0;n[est ouvert, on sait que la dérivée de la fonctiongns"annule. L"égalitég0n(xn) =0

fournit1xnn n1=exnet donc g n(xn) =exn1xnn n=11xnn exn=xnexnn En résumé, pour tout réel positifx, 06gn(x)6xnexnn oùxnest un certain réel de]0;n[. Poururéel positif, posonsh(u)=ueu. La fonctionhest dérivable sur=mbr+et pouru>0,h0(u)=(1u)eu. Par suite, la fonctionhadmet un maximum en 1 égal à1e . On a montré que

8x2[0;+¥[,8n2N, 06gn(x)61ne

ou encore8n2N, supfjgn(x)j;x>0g61ne . Ainsi, limn!+¥supfjgn(x)j;x>0g=0 et on a montré que la suite de fonctions(fn)n2Nconverge uniformément surR+vers la fonctionx7!ex.Existence deI=R+¥

0ex2dx.La fonctionx7!ex2est continue sur[0;+¥[et négligeable devant1x

2en+¥.

Donc la fonctionx7!ex2est intégrable sur[0;+¥[. Par suite,Iexiste dansR. On est alors en droit d"espérer queI=limn!+¥R+¥

0fn(x2)dx.

Lafonctionx7!fn(x2)estcontinuesur[0;+¥[etnullesur[pn;+¥[. Donclafonctionx7!fn(x2)estintégrable

sur[0;+¥[. Pourn2N, posonsIn=R+¥

0fn(x2)dx=Rpn

0 1x2n ndx.

Montrons queIntend versIquandntend vers+¥.

jIInj6Rpn

0jf(x2)fn(x2)jdx+R+¥pn

ex2dx6pn1ne +R+¥pn ex2dx=1e pn +R+¥pn ex2dx.

Puisque la fonctionx7!ex2est intégrable sur[0;+¥[, cette dernière expression tend vers 0 quandntend vers

+¥et donc limn!+¥In=I. Calcul de la limite deIn.Soitn2N. Les changements de variablesx=upnpuisu=cosvfournissent 6 I n=Rpn 0 1x2n ndx=pn R1

0(1u2)ndu=pn

Rp=2

0sin2n+1v dv=pnW

2n+1

oùWnest lan-ème intégrale de WALLIS. On a déjà vu (exercice classique, voir fiches de Maths Sup) que

W nn!+¥pp

2net donc

I nn!+¥pnqp

2(2n+1)n!+¥pp

2

Finalement,Intend verspp

2 quandntend vers+¥et donc R

0ex2dx=pp

2

.Vous pouvez voir différents calculs de l"intégrale de GAUSSdans Grands classiques de concours : intégration .Correction del"exer cice3 N1.(a) Soit n2N.

• Si8x2[0;1],f(x) =1, B n(f) =ånk=0n k X k(1X)nk= (X+(1X))n=1. • Si8x2[0;1],f(x) =x, Bquotesdbs_dbs4.pdfusesText_8
[PDF] suite de fonction exercice corrigé

[PDF] suite de fonction cours

[PDF] exercices corrigés suites et séries de fonctions pdf

[PDF] convergence uniforme série de fonction pdf

[PDF] comment mesurer les émotions

[PDF] echelle de mesure des emotions

[PDF] les caractéristiques du reportage touristique

[PDF] le récit de voyage 2as

[PDF] récit de voyage pdf

[PDF] littérature de voyage

[PDF] my work experience bac pro

[PDF] le récit de voyage exemple

[PDF] les caractéristiques d'un récit de voyage

[PDF] work placement report example

[PDF] récit de voyage texte