[PDF] FONCTIONS POLYNÔMES DE DEGRÉ 3





Previous PDF Next PDF



SECOND DEGRE (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRE (Partie Propriété : Soit f une fonction polynôme de degré 2 définie sur ? par.



SECOND DEGRÉ (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 1). I. Fonction polynôme de degré 2. Définition : On appelle fonction 



FONCTIONS POLYNÔMES DE DEGRÉ 2

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS POLYNÔMES DE DEGRÉ 2. Chapitre 1/2. Partie 1 : Définition.



FONCTIONS POLYNÔMES DE DEGRÉ 2

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS POLYNÔMES DE DEGRÉ 2. Chapitre 2/2. Partie 1 : Forme factorisée d'une fonction 



Second degré : Résumé de cours et méthodes 1 Définitions : 2

On appelle trinôme du second degré toute fonction f définie sur R par f(x) = ax2 +bx+c (ab et c réels 2 Factorisation



Polynômes

Soit P = Xn +an?1Xn?1 +···+a1X +a0 un polynôme de degré n ? 1 à coefficients dans Z. Démontrer que si P admet une racine dans Z alors celle-ci divise a0. 2.



FONCTIONS POLYNÔMES DE DEGRÉ 3

2 sur 4. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. Partie 3 : Forme factorisée d'une fonction polynôme de degré 3. Exemple : La fonction 



SECOND DEGRÉ (Partie 2)

On en déduit que ?x2 + 4 est positif pour x compris entre les abscisses de ces deux points et négatif ailleurs. 2) Cas général. Soit f une fonction polynôme du 



SECOND DEGRÉ (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 1). I. Fonction polynôme de degré 2. Définition : On appelle fonction 



FONCTIONS POLYNOMES DU SECOND DEGRE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS POLYNOMES DU. SECOND DEGRE. I. Définition. Une fonction polynôme de degré 2 f est 

1 sur 4

FONCTIONS POLYNÔMES DE DEGRÉ 3

Partie 1 : Définition

Exemples et contre-exemples :

=4 +1 -2 sont des fonctions polynômes de degré 3. =1+ -2 =-+4 est une fonction polynôme de degré 1 (fonction affine). =2 +5-1 est une fonction polynôme de degré 5. Définition : Les fonctions définies sur ℝ par ⟼ ou ⟼ + sont des fonctions polynômes de degré 3. Les coefficients et sont des réels donnés avec ≠0.

Partie 2 : Représentation graphique

Propriétés :

Soit une fonction polynôme de degré 3, telle que - Si <0 : est strictement croissante. - Si <0 : est strictement décroissante.

2 sur 4

Partie 3 : Forme factorisée d'une fonction polynôme de degré 3

Exemple :

La fonction définie par

=5 -4 -1 +3 est une fonction polynôme de degré 3 sous sa forme factorisée. Si on développe l'expression de à l'aide d'un logiciel de calcul formel, on obtient bien l'expression de degré 3 : =5 -10 -55+60 Définition : Les fonctions définies sur ℝ par sont des fonctions polynômes de degré 3.

Les coefficients ,

et sont des réels avec ≠0.

En partant de l'expression développée précédente, on peut vérifier que 4, 1 et -3 sont des

racines du polynôme . 4 =5×4 -10×4 -55×4+60=320-160-220+60=0 1 =5×1 -10×1 -55×1+60=5-10-55+60=0 -3 =5× -3 -10× -3 -55× -3 +60=-135-90+165+60=0

4, 1 et -3, solutions de l'équation

=0, sont donc des racines de f. Propriété : Soit la fonction définie sur ℝ par

L'équation

=0 possède trois solutions (éventuellement égales) := et appelées les racines de la fonction polynôme f. Méthode : Étudier le signe d'un polynôme de degré 3

Vidéo https://youtu.be/g0PfyqHSkBg

Étudier le signe de la fonction polynôme définie sur ℝ par : =2 +1 -2 -5

Correction

2 étant un nombre positif, le signe de 2

+1 -2 -5 dépend du signe de chaque facteur : +1, -2 et -5. On étudie ainsi le signe de chaque facteur et on présente les résultats dans un tableau de signes. +1=0 ou -2=0 ou -5=0 =-1 =2 =5

3 sur 4

-1, 2 et 5 sont donc les racines du polynôme . En appliquant la règle des signes dans le tableau suivant, on pourra en déduire le signe du produit =2 +1 -2 -5 On en déduit que ()≥0 pour ∈ -1;2

5;+∞

et -∞;-1 2;5

La représentation de la fonction à l'aide d'un logiciel permet de confirmer les résultats

établis précédemment.

Partie 4 : Équation de la forme x

3 = c

Propriété :

L'équation

=, avec c positif, possède une unique solution

Cette solution peut également se noter

4 sur 4

Méthode : Résoudre une équation du type x 3 = c

Vidéo https://youtu.be/4tQJRkpIH3k

Résoudre dans ℝ les équations : a) =27, b) 2 -6=16

Correction

a) On cherche le nombre qui, élevé au cube, donne 27. Ce nombre est égal à la racine cubique de 27, soit : = 27
=3. b) 2 -6=16

2

=16+6

2

=22 =11 L'équation admet donc une unique solution = 11quotesdbs_dbs47.pdfusesText_47
[PDF] Mathématiques: géométrie et "x"

[PDF] Mathématiques: Indicateurs de dispersion et comparaison de séries

[PDF] MATHEMATIQUES: LE COSINUS

[PDF] Mathématiques: nombres en écriture fractionnaire 4ème

[PDF] Mathématiques: Puissances

[PDF] Mathématiques: racines carées

[PDF] Mathematiques: Raisonnment A Partir D'un Algorithme

[PDF] mathématiques: résoudre une équation

[PDF] Mathématiques: Tableau de variation

[PDF] Mathématiques: thales

[PDF] Mathématiques: Thorème de comparaison

[PDF] Mathematiques:calculer a² et b²

[PDF] Mathématiques:devoir maison

[PDF] Mathématiques:devoir maison numéro 5

[PDF] Mathématiques:Devoir maison n°6