[PDF] PRODUIT SCALAIRE Yvan Monka – Académie de





Previous PDF Next PDF



LES VECTEURS (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES VECTEURS (Partie 1). Tout le cours en vidéo : https://youtu.be/aSSDBNn_rRI.



VECTEURS DROITES ET PLANS DE LESPACE

Propriété : Deux plans déterminés par le même couple de vecteurs non colinéaires sont parallèles. Page 5. Yvan Monka – Académie de Strasbourg – www.maths-et- 



LES VECTEURS (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES VECTEURS (Partie 2). Tout le cours en vidéo : https://youtu.be/aSSDBNn_rRI.



VECTEURS DE LESPACE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. VECTEURS DE L'ESPACE. I. Caractérisation vectorielle d'un plan.



VECTEURS ET REPÉRAGE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. VECTEURS ET REPÉRAGE. Tout le cours en vidéo : https://youtu.be/9OB3hct6gak. I. Repère du plan.



VECTEURS DROITES ET PLANS DE LESPACE

VECTEURS DROITES ET. PLANS DE L'ESPACE. Terminale Spé Maths ? Chapitre G-01. Table des matières. I Positions relatives dans l'espace.



TRANSLATION ET VECTEURS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Vecteurs. 1. Définition : Définition : Soit t la translation qui envoie A sur A' ...



VECTEURS ET DROITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. VECTEURS ET DROITES. En 1837 le mathématicien italien Giusto BELLAVITIS



PRODUIT SCALAIRE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u.



LES VECTEURS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES VECTEURS. I. Translation. Exemple : B. 80m. Une translation est un glissement :.

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38 III. Produit scalaire et orthogonalité 1) Vecteurs orthogonaux Propriété : Les vecteurs u et v sont orthogonaux si et seulement si u .v =0

. Démonstration : Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

u .v =0 ⇔u ×v

×cosu

;v =0 ⇔cosu ;v =0

Les vecteurs

u et v sont orthogonaux

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Projection orthogonale Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. Propriété : Soit

u et v deux vecteurs non nuls du plan tels que u =OA et v =OB . H est le projeté orthogonal du point B sur la droite (OA). On a : u .v =OA .OB =OA .OH

Démonstration :

OA .OB =OA .OH +HB =OA .OH +OA .HB =OA .OH

En effet, les vecteurs

OA et HB sont orthogonaux donc OA .HB =0 . Exemple : Vidéo https://youtu.be/2eTsaa2vVnI Soit un carré ABCD de côté c. AB .AC =AB .AB =AB 2 =c 2 IV. Produit scalaire dans un repère orthonormé Le plan est muni d'un repère orthonormé O;i ;j . Propriété : Soit u et v deux vecteurs de coordonnées respectives x;y et x';y' . On a : u .v =xx'+yy' . Démonstration : u .v =xi +yj .x'i +y'j =xx'i .i +xy'i .j +yx'j .i +yy'j .j =xx'i 2 +xy'i .j +yx'j .i +yy'j 2 =xx'+yy' car i =j =1 , le repère étant normé, et i .j =j .i =0

le repère étant orthogonal. Exemple : Vidéo https://youtu.be/aOLRbG0IibY Vidéo https://youtu.be/cTtV4DsoMLQ Soit

u 5;-4 et v -3;7 deux vecteurs. u .v =5×-3 +-4

×7=-15-28=-43

quotesdbs_dbs47.pdfusesText_47
[PDF] maths : limite et continuité

[PDF] maths : limite infinie

[PDF] Maths : polynomes du second degré

[PDF] Maths : Pourcentage*

[PDF] Maths : Probabilité 2nd ( Besoin d'une simple correction ;) )

[PDF] Maths : Problèmes de fractions

[PDF] Maths : Quelle fraction de cette année representent tous les dimanches

[PDF] Maths : Résolution Algébrique

[PDF] Maths : S'il vous plaît !

[PDF] Maths : S'il vous plaît avant mon Ds

[PDF] Maths : Simplifier des fractions

[PDF] Maths : Solutions d'équations

[PDF] Maths : Suite récurrente

[PDF] maths : theoreme

[PDF] maths : tracer des fonctions (sur calculatrice) + démonstration