[PDF] LES SUITES (Partie 2) Yvan Monka – Académie de





Previous PDF Next PDF



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTIQUES. ET SUITES GÉOMÉTRIQUES. Tout le cours en vidéo : https://youtu.be/ 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.



LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DE SUITES. I. Limite d'une suite géométrique. 1) Suite (qn).



LES SUITES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que.



COURS TERMINALE S LES SUITES NUMERIQUES

C. Les suites géométriques. La suite (un) est une suite géométrique s'il existe un nombre réel q tel que pour tout naturel n 



Terminale STG Chapitre 6 : suites arithmétiques et géométriques

Terminale STG. Chapitre 6 : suites arithmétiques et géométriques. Page n ° 1. 2007 2008. Dans la vitrine du magasin de monsieur suite on peut voir écrit 



SUITES ARITHMÉTICO- GÉOMÉTRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMÉTICO-. GÉOMÉTRIQUES. I. Etude d'une suite arithmético-géométrique.



• Rappel: suites arithmétiques et géométriques: Suite arithmétique

Raisonnement par récurrence: o Soit Pn une propriété dépendant de n entier naturel o Le principe peut se schématiser par: • P0 est vraie.



Maths vocab in English

math vs. maths : les deux sont corrects toutefois math relève de l'anglais maths de l'anglais britannique. ... raison (d'une suite géométrique).



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

1

LES SUITES (Partie 2)

I. Limites et comparaison

1) Théorèmes de comparaison

Théorème 1 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =+∞ alors lim Par abus de langage, on pourrait dire que la suite (u n ) pousse la suite (v n ) vers +∞ à partir d'un certain rang.

Démonstration au programme :

Soit un nombre réel a.

- lim =+∞, donc l'intervalle contient tous les termes de la suite à partir d'un certain rang que l'on note n 1

On a donc pour tout í µâ‰¥í µ

6 - A partir d'un certain rang, que l'on note n 2 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), on a : í µ<í µ

On en déduit que l'intervalle

contient tous les termes de la suite (v n ) à partir du rang max(í µ 6

Et donc lim

Théorème 2 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =-∞ alors lim 2 Méthode : Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante : lim

-1 -1 ≥-1 donc í µ -1 -1

Or lim

-1=+∞ donc par comparaison lim -1

2) Théorème d'encadrement

Théorème des gendarmes :

Soit (u

n ), (v n ) et (w n ) trois suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =lim =í µ alors lim Par abus de langage, on pourrait dire que les suites (u n ) et (w n ) (les gendarmes) se resserrent autour de la suite (v n ) à partir d'un certain rang pour la faire converger vers la même limite. Ce théorème est également appelé le théorème du sandwich.

Démonstration :

Soit un intervalle ouvert I contenant L.

- lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 1 3 - lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 2 - A partir d'un certain rang, que l'on note n 3 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), l'intervalle I contient tous les termes de la suite (v n

Et donc lim

Méthode : Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : lim

1+

BCDí±¢

1 siní µ 1

Or : lim

1 =lim 1 =0 donc d'après le théorème des gendarmes lim siní µ =0

Et donc lim

1+

BCDí±¢

=1.

II. Suites majorées, minorées, bornées

1) Définitions :

Définitions : - La suite (u

n ) est majorée s'il existe un réel M tel que pour tout entier n ϵℕ, í µ - La suite (u n ) est minorée s'il existe un réel m tel que pour tout entier nϵℕ, í µ - La suite (u n ) est bornée si elle est à la fois majorée et minorée.

Exemples :

- Les suites de terme général cosí µ ou -1 sont bornées. - La suite de terme général n 2 est minorée par 0. Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u

n ) définie pour tout entier naturel n par í µ í±¢*6 6 +2 et O =2. Démontrer par récurrence que la suite (u n ) est majorée par 3. 4 • Initialisation : O =2<3

La propriété est donc vraie pour n = 0.

• Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie : í µ Q <3. - Démontrons que : La propriété est vraie au rang k+1 : í µ Q*6 <3.

On a : í µ

Q <3 donc 6 6

×3 et donc

6 +2< 6

×3+2.

Soit : í µ

Q*6 <3 • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : í µ <3.

2) Convergence des suites monotones

Propriété : Soit (u

n ) une suite croissante définie sur ℕ.

Si lim

=í µ alors la suite (u n ) est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit:"Il existe un rang p, tel que í µ T - L'intervalle ouvert Ví µ-1;í µ T

W contient L.

Or, par hypothèse, lim

=í µ. Donc l'intervalle Ví µ-1;í µ T

W contient tous les termes

de la suite (u n ) à partir d'un certain rang (1). - Comme (u n ) est croissante : í µ T pour í µ>í µ.

Donc si í µ>í µ, alors í µ

∉Ví µ-1;í µ T W (2). (1) et (2) sont contradictoires, on en déduit qu'il n'existe pas p ϵℕ, tel que í µ T

Et donc la suite (u

n ) est majorée par L.

Théorème de convergence monotone :

- Si une suite croissante est majorée alors elle est convergente. - Si une suite décroissante est minorée alors elle est convergente. - Admis -

Remarque :

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite. Dans l'exemple ci-dessous, la suite décroissante est minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2. 5 Méthode : Utiliser le théorème de convergence monotone

Vidéo https://youtu.be/gO-MQUlBAfo

On considère la suite (u

n ) définie pour tout entier naturel n par í µ í±¢*6 6 +2 et O =2.

Démontrer que la suite (u

n ) est convergente et calculer sa limite. - On a démontré dans le paragraphe I. que la suite (u n ) est croissante. On a démontré dans la méthode précédente que la suite (u n ) est majorée par 3. D'après le théorème de convergence monotone, on en déduit que la suite (u n ) est convergente. - On pose :lim í±¢*6 =lim

Or í µ

í±¢*6 6 +2, donc lim í±¢*6 =lim 1 3 +2= 1 3 í µ+2 par produit et somme de limites. Une limite étant unique, on en déduit que í µ= 1 3 í µ+2, soit L = 3.quotesdbs_dbs47.pdfusesText_47
[PDF] Maths super urgent avec grosse récompense (voir le devoir )

[PDF] maths sur les fonction

[PDF] Maths sur les fonctions

[PDF] Maths sur les probabilités exercices

[PDF] maths sur puissances

[PDF] Maths sur Thalès pour demain

[PDF] maths svp

[PDF] maths table carrée , nappe ronde

[PDF] Maths Tableau

[PDF] maths tableur troisième

[PDF] Maths tarif

[PDF] maths taux de variation

[PDF] maths terminale es fonction exponentielle

[PDF] Maths Terminale S

[PDF] maths terminale s exercices corrigés livre