[PDF] Formulaire de mathématiques terminale S





Previous PDF Next PDF



Cours de mathématiques - terminale S

29 mai 2011 COURS DE MATHÉMATIQUES. Terminale S ... C'est dans ce sens inclusif que « ou » est utilisé en mathématiques et en logique.



Synthèse de cours (Terminale S) ? Dérivation : rappels et

La notation « 'f » est due à Newton (1642-1727) et est couramment utilisée en mathématiques (en particulier dans le secondaire). Il en existe une autre 



Formulaire de mathématiques terminale S

MATH + PRB. OPTN + PROB p est premier s'il admet exactement deux diviseurs : 1 et lui-même. • Tout nombre entier n peut se décomposer en produit de ...



Programme de spécialité de mathématiques de terminale générale

L'enseignement de spécialité de mathématiques de la classe terminale générale compétences réaliste et ambitieux



PROBABILITÉS

Probabilités – Terminale S. 1. PROBABILITÉS. I. PROBABILITÉS ( RAPPELS) F : « l'élève est une fille » M : « l'élève est en spécialité maths ».



Les performances des élèves de terminale S en mathématiques

Ainsi la France affiche une performance intermédiaire en 2015



Terminale S

Fiches de Mathématiques. 1 SUITES. Suites géométriques. ? Une suite (un) n? est géométrique s'il existe un réel q (la raison) indépendant de n tel que 



Synthèse de cours (Terminale S) ? Calcul intégral

Synthèse de cours (Terminale S). ? Calcul intégral. Intégrale d'une fonction continue positive sur un intervalle [a;b]. Dans cette première partie 



DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

Yvan Monka – Académie de Strasbourg – www.maths-?et-?tiques.fr. 1. DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S. SUITES. Propriété : Si q > 1 alors lim.



COMBINATOIRE ET DÉNOMBREMENT

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Définition : On dit que deux ensembles sont disjoints s'ils ont aucun élément en commun.

PARTIEI - NOTIONS DE SURVIE

ûPolynômes du 1erdegré

axÅbAE0()xAE¡bax axÅb¡1¡baÅ1 signe de(¡a)0signe deaûPolynômes du 2nddegréax

2ÅbxÅcAE0¢AEb2¡4acPas de racines dansRz

1,2AE¡b§ip¡¢2ax

0AE¡b2ax

P(x)¡1Å1

signe deax

P(x)¡1x

0Å1

signe dea0signe deax

P(x)¡1x

1x

2Å1

sig.a0sig.(¡a)0sig.aûIdentités remarquables ( aÅb)2AEa2Å2abÅb2 ( a¡b)2AEa2¡2abÅb2 ( a¡b)(aÅb)AEa2¡b2ûProportionnalité (produit en croix) ab AEcd ()a£dAEc£b ûPour résoudre une équation(sauf 1erdegré) j ep assetout da nsle membr ede gauche j ef actorise j "utilisel et héorèmedu p roduitnul : A£BAE0()AAE0 ouBAE0ûPour résoudre une inéquation mêmes éta pesqu "uneéqu ation j edr esseen p lusu nta bleaude sign es

ûLecture graphique²µ

0 ²A Ba f(a)Tangente en ade coeff. direct.f0(a)f

0(a)AEyB¡yAx

B¡xAûPour établir une inégalité du typeAÇB(ouAÈB...) 1. on c alculela différenceA¡Bet on la met sous la forme d"un produit ou d"un quotient 2. on en fait u ntableau de signes 3. on déduit qu esur u ncer tainint ervalle,A¡BÇ0AE)AÇB ûMes méthodes et formules(à compléter toi-même)Mathieu Ponsmathete.net

FORMULAIRETS

PARTIEII - SUITESNatureARITHMÉTIQUEGÉOMÉTRIQUEu nÅ1AEf(un)( up u nÅ1AEunÅr( vp v nÅ1AEqvnu nAEf(n)u nAEu0Ånr

AEu1Å(n¡1)r

AEu2Å(n¡2)r

AE¢¢¢v

nAEv0£qn

AEv1£qn¡1

AEv2£qn¡2

AE¢¢¢Somme deupàun(n¡pÅ1)|{z}

nombre de termes£ premierÅdernier2premier£1¡qn¡pÅ11¡qPour démontreru nÅ1¡unAE¢¢¢AErv nÅ1v nAE¢¢¢ AEq v nÅ1AE¢¢¢ AEqvnûLimites de suites lim n!Å1qnAE8 >>>:0 si¡1ÇqÇ0 ou 0ÇqÇ1

Å1siqÈ1

1 siqAE1

diverge siq6¡1ûThéorèmes de comparaison(limn!Å1unAEÅ1 v n>unAE)limn!Å1vnAEÅ1( limn!Å1unAE¡1 v n6unAE)limn!Å1vnAE¡1ûThéorème des gendarmes(vn6un6wn limn!Å1vnAElimn!Å1wnAE`AE)limn!Å1unAE`ûThéorème du point fixe8>< :fest continue u nÅ1AEf(un) (un) convergeAE)(un)convergeverslasolutionde f(x)AExûThéorèmes de convergence des suites monotones

T outesu itecr oissantemajorée c onverge;

T outesu itedécr oissantemin oréecon verge.

ûVariations de suites

u nÅ1¡un8 :È0AE)(un) est strictement croissante

Ç0AE)(un) est strictement décroissante

AE0AE)(un) est stationnaire ou constanteBSiuest définie explicitement c"est-à-dire queunAEf(n) alorsua les mêmes variations que la fonctionfqui

la définit surN.ûConstruction graphique des termes de(un)dans le cas d"une définition récurrente :unÅ1AEf(un)O~

|yAEf(x)yAExu

0"!"!"

u 1u 2u

3Croissante convergenteO~

|yAEf(x)yAExu 0"! u 1u 2u 3u

4"Escargot" convergent

1.

O npa rtde u0

2.

O npr endson image p arf:u1AEf(u0)

3. O nr abatu1sur l"axe des abscisses grâce àyAEx 4. O nrépète c ettep rocédureav ecu1, puisu2... ûRédaction-type du raisonnement par récurrence

1.Initialisation: On vérifie que la propriété est vraie au rangn0

2.Héredité: Supposons la propriété vraie au rangn, montrons qu"elle est vraie au rangnÅ1

[Écrire la propriété au rang n]AE)[Écrire la propriété au rang nÅ1]

DÉMO

3.Conclusion: La propriété étant vraie au rangn0et étant héréditaire, on en déduit que :

[Écrire la propriété au rang n]

ûAlgorithmes à connaître

Exemple à adapter en fonction de la suite étudiée, iciu0AE1 etunÅ1AE2unÅ5.Affecter àUla valeur 1Affecter àNla valeur 0Demander la valeur deKTANT QUE(NÇK)FAIREAffecter àUla valeur 2£UÅ5Affecter àNla valeurNÅ1FINTANT QUEAfficherU¬Calcul du terme de rangKAffecter àUla valeur 1Affecter àNla valeur 0Demander la valeur deMTANT QUE(UÇM)FAIREAffecter àUla valeur 2£UÅ5Affecter àNla valeurNÅ1FINTANT QUEAfficherNAlgorithme de seuil

BPour l"algorithme¬, si on veut faire affichertous les termes, il faut placer l"affichagedans la boucle.Mathieu Ponsmathete.net

FORMULAIRETS

PARTIEIII - FONCTIONS

ûTableaux des dérivées et des primitivesFonctionfDérivéef0x nnx n¡11 x n¡ nx nÅ1px1 2 px lnx1 x e xe xkuku 0u nnu

0un¡1uvu

0vÅuv01

u¡u0u 2u vu

0v¡uv0v

2puu 02 pu lnuu 0u e uu

0eucosu¡u0sinusinuu

0cosuFonctionfPrimitiveFx

n1 nÅ1xnÅ11 x n,n6AE1¡

1n¡1£1x

n¡11px2 px 1 xlnxe axÅb1 a eaxÅb1 axÅb1 a ln(axÅb)cos(axÅb)1 a sin(axÅb)sin(axÅb)¡ 1a cos(axÅb)u 0un1 nÅ1unÅ1u 0u n,n6AE1¡

1n¡1£1u

n¡1u

0ulnuu

0pu2 pu u 0eue uu

0cosusinuu

0sinu¡cosuûRédaction-type : CTVI ou th. de la bijection

•festcontinueetstrictement crois- sante (ou décroissante)surI. •fréalise une bijection deIsurJ(ou f(x) prend ses valeurs dansJ). •k2Jdonc l"équationf(x)AEkadmet une seule et unique solution®.x f® kI

J0²ln1AE0²

lneAE1²e

0AE1²e

1AEeyAElnxyAEexyAExûLimites du type :BFaire la règle des signes

k6AE0§1

AE0§k6AE00

§AE§1 §1£§1AE§1ûForme indéterminée (FI) : 11 00 utiliser les "croissances comparées".

ûCroissances comparées :

lim x!0ÅxnlnxAE0 limx!Å1lnxx nAE0 lim x!¡1xnexAE0 limx!Å1e xx nAEÅ1ûPropriétés du logarithme Népérien et de l"exponentielle : lnabAElnaÅlnb e aÅbAEea£eb ln ab

AElna¡lnb

e a¡bAEeae blnanAEnlna (e a)nAEena ln paAE12 lna e

¡aAE1e

aln 1b

AE ¡lnb

lne xAEx e lnxAEx

ûInterprétation graphique des limites :

lim x!§1f(x)AE`AE)Cfadmet en§1une asymptote horizontale d"équationyAE`. lim x!af(x)AE§1 AE)Cfadmet une asymptote verticale d"équationxAEa.

ûÉtude de position :

étudie le signe def(x)¡g(x).ûÉquation de la tangente ena: yAEf0(a)(x¡a)Åf(a)ûCalcul d"une aire à partir d"une intégrale :abAC fAAEZb af(x)dxV mAE1b¡aZ b af(x)dxabA C fC gAAEZb a(f(x)¡g(x))dxûPropriétés de l"intégrale : Z b a f(x)dxAE¡Z a b f(x)dxZ b a f(x)dxÅZ c b f(x)dxAEZ c a f(x)dx (Chasles)f(x)>0 sur[a;b]AE)Z b a f(x)dx>0(Positivité)Z b a (®fůg)AE®Z b a fůZ b a g (Linéarité)Mathieu Ponsmathete.net

FORMULAIRETS

PARTIEIV - COMPLEXES ET TRIGONOMÉTRIEO²M(z)²N(z)~ u~ vj zj¯ ¯z

¯¯AEjzjxy

¡yarg(z)arg(z)AE¡arg(z)ûMest le point d"affixezAExÅiyavec i2AE¡1. ûNest le point d"affixezconjugué deztel que :zAEx¡iy. ¡¡!ABest le vecteur d"affixez¡¡!ABAEzB¡zA.

ûModule dez:jzjAEqx

2Åy2(th. de Pythagore)

ûArgument dez:

arg(z)AEµÅ2k¼(k2Z) avec8 >:cosµAExj zjAEAdjHyp sinµAEyj zjAEOppHypquotesdbs_dbs47.pdfusesText_47
[PDF] maths terminale s exercices corrigés livre

[PDF] maths terminale st2s statistiques

[PDF] maths terminale stmg exercices

[PDF] maths terminale stmg programme

[PDF] Maths TES : Suites géométriques

[PDF] Maths theoreme al-kashy

[PDF] Maths Théoreme de pythagore

[PDF] Maths Theroeme de THALES

[PDF] MATHS TLE ES LIMITES ET DERIVATION

[PDF] maths très urgent s'il vous plait

[PDF] maths triangle rectangle +angle

[PDF] Maths Triangle: Milieux et parallèles

[PDF] Maths Triangle:milieux et paralleles

[PDF] Maths Triangles égaux

[PDF] Maths TS : les démonstrations par récurrence