[PDF] REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS





Previous PDF Next PDF



ÉQUATIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr RESOUDRE UNE EQUATION : c'est chercher et trouver le nombre caché sous l'inconnue.



EQUATIONS INEQUATIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. EQUATIONS Méthode : Résoudre une équation en se ramenant à une équation-produit.



PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. PRIMITIVES ET. ÉQUATIONS DIFFÉRENTIELLES. Tout le cours sur les équations différentielles 



ÉQUATIONS INÉQUATIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. ÉQUATIONS RESOUDRE UNE EQUATION : C'est chercher et trouver le nombre inconnu.



ÉQUATIONS POLYNOMIALES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. ÉQUATIONS POLYNOMIALES Méthode : Résoudre une équation du second degré dans ?.



EQUATIONS DE DROITES SYSTEMES DEQUATIONS

Pour montrer que deux droites sont parallèles il faudra déterminer leur c) Résoudre un système d'équations linéaires à deux inconnues x et y et à deux ...



EQUATIONS DIFFERENTIELLES I Définition et notation

l'équation (E). Démonstration: Exemple : Résoudre (E4) y' -2 y = 1-2x et (E5) y' - 



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr 1) Démontrer que la droite ( ) et le plan P sont sécants.



Équations différentielles

Résoudre les équations différentielles suivantes en trouvant une solution (a) Montrer que si y0 est une solution particulière de l'équation de Riccati.



FONCTION LOGARITHME NEPERIEN (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 3. Méthode : Résoudre une équation ou une inéquation. Vidéo https://youtu.be/lCT-8ijhZiE.

1

REPRÉSENTATIONS PARAMÉTRIQUES

ET ÉQUATIONS CARTÉSIENNES

Le cours en vidéo : https://youtu.be/naOM6YG6DJc Partie 1 : Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !;⃗,⃗, Soit une droite passant par un point et de vecteur directeur ⃗

On a :

∈⟺ Il existe un réel tel que Ce système s'appelle une représentation paramétrique de la droite .

Démonstration :

∈⟺ ⃗ et sont colinéaires ⟺Il existe un réel tel que

Exemple :

La droite passant par le point

1 -2 3 et de vecteur directeur ⃗ 4 5 -3 a pour représentation paramétrique : =1+4 =-2+5 =3-3 Méthode : Utiliser la représentation paramétrique d'une droite

Vidéo https://youtu.be/smCUbzJs9xo

Soit les points

2 3 -1 et 1 -3 2

Déterminer les coordonnées du point d'intersection de la droite () avec le plan de repère

2

Correction

- On commence par déterminer une représentation paramétrique de la droite () : Un vecteur directeur de () est : 1-2 -3-3 2- -1 -1 -6 3 La droite () passe par le point 2 3 -1 Une représentation paramétrique de () est : =2- =3-6 =-1+3 - Soit le point d'intersection de la droite () avec le plan de repère Alors =0 car appartient au plan de repère

Donc -1+3=0 soit =

Et donc :

=2- 1 3 5 3 =3-6× 1 3 =1 =0

Le point a donc pour coordonnées Q

5 3 1 0 R.

Partie 2 : Équation cartésienne d'un plan

Propriété : L'espace est muni d'un repère orthonormé !;⃗,⃗,

Un plan de vecteur normal ⃗ non nul admet une équation de la forme +++=0, avec ∈ℝ.

Réciproquement, si , et sont non tous nuls, l'ensemble des points

tels que +++=0, avec ∈ℝ, est un plan. Cette équation s'appelle équation cartésienne du plan .

Démonstration au programme :

Vidéo https://youtu.be/GKsHtrImI_o

- Soit un point de . et ⃗ sont orthogonaux .⃗=0 =0 3 =0 ⟺+++=0 avec =-

- Réciproquement, supposons par exemple que ≠0 (, et sont non tous nuls).

On note E l'ensemble des points

vérifiant l'équation +++=0

Alors le point Q

0 0 R vérifie l'équation +++=0. Et donc ∈E.

Soit un vecteur ⃗

. Pour tout point , on a : .⃗=V+

W+

-0 -0

E est donc l'ensemble des points

tels que .⃗=0. Donc l'ensemble E est le plan passant par et de vecteur normal ⃗.

Exemple : Le plan d'équation cartésienne -+5+1=0 a pour vecteur normal ⃗

1 -1 5 Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan passant par le

point -1 2 1 et de vecteur normal ⃗ 3 -3 1

Correction

Une équation cartésienne de est de la forme 3-3++=0. Le point appartient à donc ses coordonnées vérifient l'équation : 3× -1 -3×2+1+=0 donc =8. Une équation cartésienne de est donc : 3-3++8=0. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal

à un vecteur normal de l'autre.

4 Méthode : Démontrer que deux plans sont perpendiculaires

Vidéo https://youtu.be/okvo1SUtHUc

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

2+4+4-3=0 et 2-5+4-1=0.

Démontrer que les plans et ′ sont perpendiculaires.

Correction

Les plans et ′sont perpendiculaires si et seulement si un vecteur normal de l'un est

orthogonal à un vecteur normal de l'autre. Un vecteur normal de est ⃗ 2 4 4 et un vecteur normal de ′est ′ 2 -5 4 =2×2+4× -5 +4×4=0

Les vecteurs ⃗ et ′

sont orthogonaux donc les plans et ′sont perpendiculaires.

Partie 3 : Applications

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan a pour équation 2-+3-2=0.

Soit

1 2 -3 et -1 2 0 a) Démontrer que la droite () et le plan sont sécants. b) Déterminer leur point d'intersection.

Correction

a) Un vecteur normal de est ⃗ 2 -1 3 () et sont sécants si ⃗ et ne sont pas orthogonaux.

On a :

-2 0 3

Comme :

.⃗=-2×2+3×3≠0, on conclut que () et le plan ne sont pas

parallèles et donc sont sécants. b) Une représentation paramétrique de la droite () est : =1-2 =2 =-3+3 5

Le point

, intersection de () et de , vérifie donc le système suivant : Z =1-2 =2 =-3+3

2-+3-2=0

On a donc : 2

1-2

-2+3 -3+3 -2=0

5-11=0 soit =

D'où :

=1-2× 11 5 17 5 =2 =-3+3× 11 5 18 5 Ainsi la droite () et le plan sont sécants en 17 5 2 18 5 Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

Vidéo https://youtu.be/RoacrySlUAU

Dans un repère orthonormé, on donne les points 1 0 2 -1 2 1 et 0 1 -2

Déterminer les coordonnées du projeté orthogonal du point sur la droite ().

Correction

On appelle le projeté orthogonal du point sur la droite ().

On a :

-2 2 -1 Une représentation paramétrique de () est : =1-2 =2 =2-

Le point appartient à la droite () donc ses coordonnées vérifient les équations du

système paramétrique de ().

On a ainsi :

1-2

2

2-

et donc

1-2

2-1

2-+2

1-2

2-1

4-

Or,

et sont othogonaux, donc : =0

1-2

-2

2-1

×2+

4-

quotesdbs_dbs47.pdfusesText_47
[PDF] Maths: ETUDES DE FONCTIONS

[PDF] MATHS: EXERCICE F1 ET F2 pour demain

[PDF] Maths: Exercice Second degré

[PDF] Maths: Exercices probabilité

[PDF] Maths: F(X) ou F(0)

[PDF] maths: fonctions

[PDF] Maths: Fonctions/Triangle rectangle

[PDF] Maths: Inéquations produits

[PDF] Maths: LA COURBE REPRESENTATIVE

[PDF] maths: la fonction

[PDF] Maths: les dérives (convexité, double dérivés)

[PDF] Maths: les équations

[PDF] MATHS: petit exercice où il faut bien citer les propriétées (rectangle,

[PDF] Maths: Racine Carré

[PDF] Maths: Résolution graphique d'inéquations 2nde